VisionScout / app.py
DawnC's picture
Upload 6 files
e4aac34 verified
raw
history blame
20.3 kB
import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import gradio as gr
import io
from PIL import Image, ImageDraw, ImageFont
import spaces
from typing import Dict, List, Any, Optional, Tuple
from ultralytics import YOLO
from detection_model import DetectionModel
from color_mapper import ColorMapper
from visualization_helper import VisualizationHelper
from evaluation_metrics import EvaluationMetrics
color_mapper = ColorMapper()
model_instances = {}
@spaces.GPU
def process_image(image, model_instance, confidence_threshold, filter_classes=None):
"""
Process an image for object detection
Args:
image: Input image (numpy array or PIL Image)
model_instance: DetectionModel instance to use
confidence_threshold: Confidence threshold for detection
filter_classes: Optional list of classes to filter results
Returns:
Tuple of (result_image, result_text, stats_data)
"""
# initialize key variables
result = None
stats = {}
temp_path = None
try:
# update confidence threshold
model_instance.confidence = confidence_threshold
# processing input image
if isinstance(image, np.ndarray):
# Convert BGR to RGB if needed
if image.shape[2] == 3:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
pil_image = Image.fromarray(image_rgb)
elif image is None:
return None, "No image provided. Please upload an image.", {}
else:
pil_image = image
# store temp files
import uuid
import tempfile
temp_dir = tempfile.gettempdir() # use system temp directory
temp_filename = f"temp_{uuid.uuid4().hex}.jpg"
temp_path = os.path.join(temp_dir, temp_filename)
pil_image.save(temp_path)
# object detection
result = model_instance.detect(temp_path)
if result is None:
return None, "Detection failed. Please try again with a different image.", {}
# calculate stats
stats = EvaluationMetrics.calculate_basic_stats(result)
# add space calculation
spatial_metrics = EvaluationMetrics.calculate_distance_metrics(result)
stats["spatial_metrics"] = spatial_metrics
if filter_classes and len(filter_classes) > 0:
# get classes, boxes, confidence
classes = result.boxes.cls.cpu().numpy().astype(int)
confs = result.boxes.conf.cpu().numpy()
boxes = result.boxes.xyxy.cpu().numpy()
mask = np.zeros_like(classes, dtype=bool)
for cls_id in filter_classes:
mask = np.logical_or(mask, classes == cls_id)
filtered_stats = {
"total_objects": int(np.sum(mask)),
"class_statistics": {},
"average_confidence": float(np.mean(confs[mask])) if np.any(mask) else 0,
"spatial_metrics": stats["spatial_metrics"]
}
# update stats
names = result.names
for cls, conf in zip(classes[mask], confs[mask]):
cls_name = names[int(cls)]
if cls_name not in filtered_stats["class_statistics"]:
filtered_stats["class_statistics"][cls_name] = {
"count": 0,
"average_confidence": 0
}
filtered_stats["class_statistics"][cls_name]["count"] += 1
filtered_stats["class_statistics"][cls_name]["average_confidence"] = conf
stats = filtered_stats
viz_data = EvaluationMetrics.generate_visualization_data(
result,
color_mapper.get_all_colors()
)
result_image = VisualizationHelper.visualize_detection(
temp_path, result, color_mapper=color_mapper, figsize=(12, 12), return_pil=True
)
result_text = EvaluationMetrics.format_detection_summary(viz_data)
return result_image, result_text, stats
except Exception as e:
error_message = f"Error Occurs: {str(e)}"
import traceback
traceback.print_exc()
print(error_message)
return None, error_message, {}
finally:
if temp_path and os.path.exists(temp_path):
try:
os.remove(temp_path)
except Exception as e:
print(f"Cannot delete temp files {temp_path}: {str(e)}")
def format_result_text(stats):
"""Format detection statistics into readable text"""
if not stats or "total_objects" not in stats:
return "No objects detected."
lines = [
f"Detected {stats['total_objects']} objects.",
f"Average confidence: {stats.get('average_confidence', 0):.2f}",
"",
"Objects by class:",
]
if "class_statistics" in stats and stats["class_statistics"]:
# Sort classes by count
sorted_classes = sorted(
stats["class_statistics"].items(),
key=lambda x: x[1]["count"],
reverse=True
)
for cls_name, cls_stats in sorted_classes:
lines.append(f"• {cls_name}: {cls_stats['count']} (avg conf: {cls_stats.get('average_confidence', 0):.2f})")
else:
lines.append("No class information available.")
return "\n".join(lines)
def get_all_classes():
"""Get all available COCO classes"""
try:
class_names = model.class_names
return [(idx, name) for idx, name in class_names.items()]
except:
# Fallback to standard COCO classes
return [
(0, 'person'), (1, 'bicycle'), (2, 'car'), (3, 'motorcycle'), (4, 'airplane'),
(5, 'bus'), (6, 'train'), (7, 'truck'), (8, 'boat'), (9, 'traffic light'),
(10, 'fire hydrant'), (11, 'stop sign'), (12, 'parking meter'), (13, 'bench'),
(14, 'bird'), (15, 'cat'), (16, 'dog'), (17, 'horse'), (18, 'sheep'), (19, 'cow'),
(20, 'elephant'), (21, 'bear'), (22, 'zebra'), (23, 'giraffe'), (24, 'backpack'),
(25, 'umbrella'), (26, 'handbag'), (27, 'tie'), (28, 'suitcase'), (29, 'frisbee'),
(30, 'skis'), (31, 'snowboard'), (32, 'sports ball'), (33, 'kite'), (34, 'baseball bat'),
(35, 'baseball glove'), (36, 'skateboard'), (37, 'surfboard'), (38, 'tennis racket'),
(39, 'bottle'), (40, 'wine glass'), (41, 'cup'), (42, 'fork'), (43, 'knife'),
(44, 'spoon'), (45, 'bowl'), (46, 'banana'), (47, 'apple'), (48, 'sandwich'),
(49, 'orange'), (50, 'broccoli'), (51, 'carrot'), (52, 'hot dog'), (53, 'pizza'),
(54, 'donut'), (55, 'cake'), (56, 'chair'), (57, 'couch'), (58, 'potted plant'),
(59, 'bed'), (60, 'dining table'), (61, 'toilet'), (62, 'tv'), (63, 'laptop'),
(64, 'mouse'), (65, 'remote'), (66, 'keyboard'), (67, 'cell phone'), (68, 'microwave'),
(69, 'oven'), (70, 'toaster'), (71, 'sink'), (72, 'refrigerator'), (73, 'book'),
(74, 'clock'), (75, 'vase'), (76, 'scissors'), (77, 'teddy bear'), (78, 'hair drier'),
(79, 'toothbrush')
]
def create_interface():
"""Create the Gradio interface"""
# Get CSS styles
css = """
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
background: linear-gradient(120deg, #e0f7fa, #b2ebf2);
margin: 0;
padding: 0;
}
.gradio-container {
max-width: 1200px !important;
}
.app-header {
text-align: center;
margin-bottom: 2rem;
background: rgba(255, 255, 255, 0.8);
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.app-title {
color: #2D3748;
font-size: 2.5rem;
margin-bottom: 0.5rem;
background: linear-gradient(90deg, #4299e1, #48bb78);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.app-subtitle {
color: #4A5568;
font-size: 1.2rem;
font-weight: normal;
margin-top: 0.25rem;
}
.app-divider {
width: 50px;
height: 3px;
background: linear-gradient(90deg, #4299e1, #48bb78);
margin: 1rem auto;
}
.input-panel, .output-panel {
background: white;
border-radius: 10px;
padding: 1rem;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.detect-btn {
background: linear-gradient(90deg, #4299e1, #48bb78) !important;
color: white !important;
border: none !important;
transition: transform 0.3s, box-shadow 0.3s !important;
}
.detect-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}
.detect-btn:active {
transform: translateY(1px) !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
}
.footer {
text-align: center;
margin-top: 2rem;
font-size: 0.9rem;
color: #4A5568;
}
/* Responsive adjustments */
@media (max-width: 768px) {
.app-title {
font-size: 2rem;
}
.app-subtitle {
font-size: 1rem;
}
}
"""
# get the models info
available_models = DetectionModel.get_available_models()
model_choices = [model["model_file"] for model in available_models]
model_labels = [f"{model['name']} - {model['inference_speed']}" for model in available_models]
# Available classes for filtering
available_classes = get_all_classes()
class_choices = [f"{id}: {name}" for id, name in available_classes]
# Create Gradio Blocks interface
with gr.Blocks(css=css) as demo:
# Header
with gr.Group(elem_classes="app-header"):
gr.HTML("""
<h1 class="app-title">VisionScout</h1>
<h2 class="app-subtitle">Detect and identify objects in your images</h2>
<div class="app-divider"></div>
""")
current_model = gr.State("yolov8m.pt") # use medium size as default
# Input and Output panels
with gr.Row():
# Left column - Input controls
with gr.Column(scale=4, elem_classes="input-panel"):
with gr.Group():
gr.Markdown("### Upload Image")
image_input = gr.Image(type="pil", label="Upload an image")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_choices,
value="yolov8m.pt",
label="Select Model",
info="Choose different models based on your needs for speed vs. accuracy"
)
# display model info
model_info = gr.Markdown(DetectionModel.get_model_description("yolov8m.pt"))
confidence = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.25,
step=0.05,
label="Confidence Threshold",
info="Higher values show fewer but more confident detections"
)
with gr.Accordion("Filter Classes", open=False):
# Common object categories
with gr.Row():
people_btn = gr.Button("People")
vehicles_btn = gr.Button("Vehicles")
animals_btn = gr.Button("Animals")
objects_btn = gr.Button("Common Objects")
# Class selection
class_filter = gr.Dropdown(
choices=class_choices,
multiselect=True,
label="Select Classes to Display",
info="Leave empty to show all detected objects"
)
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="detect-btn")
with gr.Group():
gr.Markdown("### How to Use")
gr.Markdown("""
1. Upload an image or use the camera
2. Adjust confidence threshold if needed
3. Optionally filter to specific object classes
4. Click "Detect Objects" button
The model will identify objects in your image and display them with bounding boxes.
**Note:** Detection quality depends on image clarity and object visibility. The model can detect up to 80 different types of common objects.
""")
# Right column - Results display
with gr.Column(scale=6, elem_classes="output-panel"):
with gr.Tab("Detection Result"):
result_image = gr.Image(type="pil", label="Detection Result")
result_text = gr.Textbox(label="Detection Details", lines=10)
with gr.Tab("Statistics"):
with gr.Row():
with gr.Column(scale=1):
stats_json = gr.Json(label="Full Statistics")
with gr.Column(scale=1):
gr.Markdown("### Object Distribution")
plot_output = gr.Plot(label="Object Distribution")
# model option
model_dropdown.change(
fn=lambda model: (model, DetectionModel.get_model_description(model)),
inputs=[model_dropdown],
outputs=[current_model, model_info]
)
# change the buttom of different model
detect_btn.click(
fn=lambda img, model, conf, classes: process_and_plot(img, model, conf, classes),
inputs=[image_input, current_model, confidence, class_filter],
outputs=[result_image, result_text, stats_json, plot_output]
)
# Quick filter buttons
people_classes = [0] # Person
vehicles_classes = [1, 2, 3, 4, 5, 6, 7, 8] # Various vehicles
animals_classes = list(range(14, 24)) # Animals in COCO
common_objects = [41, 42, 43, 44, 45, 67, 73, 74, 76] # Common household items
people_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in people_classes],
outputs=class_filter
)
vehicles_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in vehicles_classes],
outputs=class_filter
)
animals_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in animals_classes],
outputs=class_filter
)
objects_btn.click(
lambda: [f"{id}: {name}" for id, name in available_classes if id in common_objects],
outputs=class_filter
)
# Set up example images
example_images = [
"room_01.jpg",
"street_01.jpg",
"street_02.jpg",
"street_03.jpg"
]
gr.Examples(
examples=example_images,
inputs=image_input,
outputs=None,
fn=None,
cache_examples=False,
)
# Footer
gr.HTML("""
<div class="footer">
<p>Powered by YOLOv8 and Ultralytics • Created with Gradio</p>
<p>Model can detect 80 different classes of objects</p>
</div>
""")
return demo
@spaces.GPU
def process_and_plot(image, model_name, confidence_threshold, filter_classes=None):
"""
Process image and create plots for statistics
Args:
image: Input image
model_name: Name of the model to use
confidence_threshold: Confidence threshold for detection
filter_classes: Optional list of classes to filter results
Returns:
Tuple of (result_image, result_text, stats_json, plot_figure)
"""
global model_instances
if model_name not in model_instances:
print(f"Creating new model instance for {model_name}")
model_instances[model_name] = DetectionModel(model_name=model_name, confidence=confidence_threshold, iou=0.45)
else:
print(f"Using existing model instance for {model_name}")
model_instances[model_name].confidence = confidence_threshold
class_ids = None
if filter_classes:
class_ids = []
for class_str in filter_classes:
try:
# Extract ID from format "id: name"
class_id = int(class_str.split(":")[0].strip())
class_ids.append(class_id)
except:
continue
# execute detection
result_image, result_text, stats = process_image(
image,
model_instances[model_name],
confidence_threshold,
class_ids
)
# create stats table
plot_figure = create_stats_plot(stats)
return result_image, result_text, stats, plot_figure
def create_stats_plot(stats):
"""
Create a visualization of statistics data
Args:
stats: Dictionary containing detection statistics
Returns:
Matplotlib figure with visualization
"""
if not stats or "class_statistics" not in stats or not stats["class_statistics"]:
# Create empty plot if no data
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, "No detection data available",
ha='center', va='center', fontsize=12)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig
# preparing visualization data
viz_data = {
"total_objects": stats.get("total_objects", 0),
"average_confidence": stats.get("average_confidence", 0),
"class_data": []
}
# get current model classes
# This uses the get_all_classes function which should retrieve from the current model
available_classes = dict(get_all_classes())
# process class data
for cls_name, cls_stats in stats.get("class_statistics", {}).items():
# search for class ID
class_id = -1
# Try to find the class ID from class names
for id, name in available_classes.items():
if name == cls_name:
class_id = id
break
cls_data = {
"name": cls_name,
"class_id": class_id,
"count": cls_stats.get("count", 0),
"average_confidence": cls_stats.get("average_confidence", 0),
"color": color_mapper.get_color(class_id if class_id >= 0 else cls_name)
}
viz_data["class_data"].append(cls_data)
# Sort by count in descending order
viz_data["class_data"].sort(key=lambda x: x["count"], reverse=True)
return EvaluationMetrics.create_stats_plot(viz_data)
if __name__ == "__main__":
import time
demo = create_interface()
demo.launch()