File size: 5,459 Bytes
8398621
 
 
00d591a
6e62cd2
915f4ae
8398621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915f4ae
8398621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423b272
8398621
 
 
 
 
 
 
 
 
423b272
8398621
 
 
423b272
8398621
a7a4022
8398621
 
 
 
a7a4022
8398621
 
 
423b272
8398621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f9f026
a7a4022
8398621
 
 
 
 
 
 
 
 
 
 
 
00d591a
d9c9363
8398621
 
 
 
 
 
d9c9363
8398621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915f4ae
 
8398621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import spaces
import gradio as gr
import random
import os
import time
import torch
from diffusers import FluxPipeline

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")

DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")

# Cache for the pipeline
CACHED_PIPE = None

def load_bnb_4bit_pipeline():
    """Load the 4-bit quantized pipeline"""
    global CACHED_PIPE
    if CACHED_PIPE is not None:
        return CACHED_PIPE
    
    print("Loading 4-bit BNB pipeline...")
    MODEL_ID = "derekl35/FLUX.1-dev-nf4"
    
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16
        )
        pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPE = pipe
        return pipe
    except Exception as e:
        print(f"Error loading 4-bit BNB pipeline: {e}")
        raise

@spaces.GPU(duration=240)
def generate_image(prompt, progress=gr.Progress(track_tqdm=True)):
    """Generate image using 4-bit quantized model"""
    if not prompt:
        return None, "Please enter a prompt."
    
    progress(0.2, desc="Loading 4-bit quantized model...")
    
    try:
        # Load the 4-bit pipeline
        pipe = load_bnb_4bit_pipeline()
        
        # Set up generation parameters
        pipe_kwargs = {
            "prompt": prompt,
            "height": DEFAULT_HEIGHT,
            "width": DEFAULT_WIDTH,
            "guidance_scale": DEFAULT_GUIDANCE_SCALE,
            "num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
            "max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
        }
        
        # Generate seed
        seed = random.getrandbits(64)
        print(f"Using seed: {seed}")
        
        progress(0.5, desc="Generating image...")
        
        # Generate image
        gen_start_time = time.time()
        image = pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images[0]
        gen_end_time = time.time()
        
        print(f"Image generated in {gen_end_time - gen_start_time:.2f} seconds")
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"Memory reserved: {mem_reserved:.2f} GB")
        
        return image, f"Generation complete! (Seed: {seed})"
        
    except Exception as e:
        print(f"Error during generation: {e}")
        return None, f"Error: {e}"

# Create Gradio interface
with gr.Blocks(title="FLUXllama", theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div style='text-align: center; margin-bottom: 20px;'>
            <h1>FLUXllama</h1>
            <p>FLUX.1-dev 4-bit Quantized Version</p>
        </div>
        """
    )
    
    gr.HTML(
        """
        <div class='container' style='display:flex; justify-content:center; gap:12px; margin-bottom: 20px;'>
            <a href="https://huggingface.co/spaces/openfree/Best-AI" target="_blank">
                <img src="https://img.shields.io/static/v1?label=OpenFree&message=BEST%20AI%20Services&color=%230000ff&labelColor=%23000080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="OpenFree badge">
            </a>
    
            <a href="https://discord.gg/openfreeai" target="_blank">
                <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord badge">
            </a>
        </div>
        """
    )
    
    with gr.Row():
        prompt_input = gr.Textbox(
            label="Enter your prompt",
            placeholder="e.g., A photorealistic portrait of an astronaut on Mars",
            lines=2,
            scale=4
        )
        generate_button = gr.Button("Generate", variant="primary", scale=1)
    
    output_image = gr.Image(
        label="Generated Image (4-bit Quantized)",
        type="pil",
        height=600
    )
    
    status_text = gr.Textbox(
        label="Status",
        interactive=False,
        lines=1
    )
    
    # Connect components
    generate_button.click(
        fn=generate_image,
        inputs=[prompt_input],
        outputs=[output_image, status_text]
    )
    
    # Enter key to submit
    prompt_input.submit(
        fn=generate_image,
        inputs=[prompt_input],
        outputs=[output_image, status_text]
    )
    
    # Example prompts
    gr.Examples(
        examples=[
            "A photorealistic portrait of an astronaut on Mars",
            "Water-color painting of a cat wearing sunglasses",
            "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8K",
            "A majestic dragon flying over a medieval castle at sunset",
            "Abstract art representing the concept of time and space",
            "Detailed oil painting of a steampunk clockwork city",
            "Underwater scene with bioluminescent creatures in deep ocean",
            "Japanese garden in autumn with falling maple leaves"
        ],
        inputs=prompt_input
    )

if __name__ == "__main__":
    demo.launch(share=True)