File size: 35,019 Bytes
e11ace5
1312362
915f4ae
6e62cd2
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc8029f
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e62cd2
915f4ae
 
dc8029f
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7062e9c
 
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e676f8a
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ace5
350b26b
915f4ae
 
 
 
e11ace5
915f4ae
e11ace5
 
 
 
 
 
 
 
 
 
 
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ace5
 
 
 
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ace5
 
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ace5
 
 
 
 
915f4ae
 
 
 
 
 
e11ace5
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e11ace5
 
 
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e676f8a
 
915f4ae
f69d4c3
915f4ae
e11ace5
915f4ae
7b772c9
0c215fa
915f4ae
 
 
1312362
e11ace5
915f4ae
e521f4d
915f4ae
 
 
 
 
 
6e62cd2
 
e11ace5
8eea048
 
 
 
 
915f4ae
 
 
 
 
 
 
 
 
1831286
e676f8a
915f4ae
 
 
 
e521f4d
915f4ae
 
 
 
 
 
 
 
6e62cd2
 
e11ace5
 
 
 
 
 
 
 
915f4ae
 
 
 
6e62cd2
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e521f4d
 
 
 
 
 
 
915f4ae
 
 
 
 
 
 
 
 
8e9a734
915f4ae
 
 
 
 
 
 
 
 
e521f4d
915f4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
# import os
import spaces

import time
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from dataclasses import dataclass
import math
from typing import Callable

from tqdm import tqdm
import bitsandbytes as bnb
from bitsandbytes.nn.modules import Params4bit, QuantState

import torch
import random
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from torch import Tensor, nn
from transformers import CLIPTextModel, CLIPTokenizer
from transformers import T5EncoderModel, T5Tokenizer
# from optimum.quanto import freeze, qfloat8, quantize


# ---------------- Encoders ----------------


class HFEmbedder(nn.Module):
    def __init__(self, version: str, max_length: int, **hf_kwargs):
        super().__init__()
        self.is_clip = version.startswith("openai")
        self.max_length = max_length
        self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"

        if self.is_clip:
            self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
            self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
        else:
            self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
            self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)

        self.hf_module = self.hf_module.eval().requires_grad_(False)

    def forward(self, text: list[str]) -> Tensor:
        batch_encoding = self.tokenizer(
            text,
            truncation=True,
            max_length=self.max_length,
            return_length=False,
            return_overflowing_tokens=False,
            padding="max_length",
            return_tensors="pt",
        )

        outputs = self.hf_module(
            input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
            attention_mask=None,
            output_hidden_states=False,
        )
        return outputs[self.output_key]
    

device = "cuda"
t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
# quantize(t5, weights=qfloat8)
# freeze(t5)


# ---------------- NF4 ----------------


def functional_linear_4bits(x, weight, bias):
    out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state)
    out = out.to(x)
    return out


def copy_quant_state(state: QuantState, device: torch.device = None) -> QuantState:
    if state is None:
        return None

    device = device or state.absmax.device

    state2 = (
        QuantState(
            absmax=state.state2.absmax.to(device),
            shape=state.state2.shape,
            code=state.state2.code.to(device),
            blocksize=state.state2.blocksize,
            quant_type=state.state2.quant_type,
            dtype=state.state2.dtype,
        )
        if state.nested
        else None
    )

    return QuantState(
        absmax=state.absmax.to(device),
        shape=state.shape,
        code=state.code.to(device),
        blocksize=state.blocksize,
        quant_type=state.quant_type,
        dtype=state.dtype,
        offset=state.offset.to(device) if state.nested else None,
        state2=state2,
    )


class ForgeParams4bit(Params4bit):
    def to(self, *args, **kwargs):
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
        if device is not None and device.type == "cuda" and not self.bnb_quantized:
            return self._quantize(device)
        else:
            n = ForgeParams4bit(
                torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking),
                requires_grad=self.requires_grad,
                quant_state=copy_quant_state(self.quant_state, device),
                # blocksize=self.blocksize,
                # compress_statistics=self.compress_statistics,
                compress_statistics=False,
                blocksize=64,
                quant_type=self.quant_type,
                quant_storage=self.quant_storage,
                bnb_quantized=self.bnb_quantized,
                module=self.module
            )
            self.module.quant_state = n.quant_state
            self.data = n.data
            self.quant_state = n.quant_state
            return n


class ForgeLoader4Bit(torch.nn.Module):
    def __init__(self, *, device, dtype, quant_type, **kwargs):
        super().__init__()
        self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype))
        self.weight = None
        self.quant_state = None
        self.bias = None
        self.quant_type = quant_type

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        super()._save_to_state_dict(destination, prefix, keep_vars)
        quant_state = getattr(self.weight, "quant_state", None)
        if quant_state is not None:
            for k, v in quant_state.as_dict(packed=True).items():
                destination[prefix + "weight." + k] = v if keep_vars else v.detach()
        return

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")}

        if any('bitsandbytes' in k for k in quant_state_keys):
            quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys}

            self.weight = ForgeParams4bit.from_prequantized(
                data=state_dict[prefix + 'weight'],
                quantized_stats=quant_state_dict,
                requires_grad=False,
                # device=self.dummy.device,
                device=torch.device('cuda'),
                module=self
            )
            self.quant_state = self.weight.quant_state

            if prefix + 'bias' in state_dict:
                self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))

            del self.dummy
        elif hasattr(self, 'dummy'):
            if prefix + 'weight' in state_dict:
                self.weight = ForgeParams4bit(
                    state_dict[prefix + 'weight'].to(self.dummy),
                    requires_grad=False,
                    compress_statistics=True,
                    quant_type=self.quant_type,
                    quant_storage=torch.uint8,
                    module=self,
                )
                self.quant_state = self.weight.quant_state

            if prefix + 'bias' in state_dict:
                self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))

            del self.dummy
        else:
            super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


class Linear(ForgeLoader4Bit):
    def __init__(self, *args, device=None, dtype=None, **kwargs):
        super().__init__(device=device, dtype=dtype, quant_type='nf4')

    def forward(self, x):
        self.weight.quant_state = self.quant_state

        if self.bias is not None and self.bias.dtype != x.dtype:
            # Maybe this can also be set to all non-bnb ops since the cost is very low.
            # And it only invokes one time, and most linear does not have bias
            self.bias.data = self.bias.data.to(x.dtype)

        return functional_linear_4bits(x, self.weight, self.bias)
    

nn.Linear = Linear


# ---------------- Model ----------------


def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
    q, k = apply_rope(q, k, pe)

    x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
    # x = rearrange(x, "B H L D -> B L (H D)")
    x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)

    return x


def rope(pos, dim, theta):
    scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
    omega = 1.0 / (theta ** scale)

    # out = torch.einsum("...n,d->...nd", pos, omega)
    out = pos.unsqueeze(-1) * omega.unsqueeze(0)

    cos_out = torch.cos(out)
    sin_out = torch.sin(out)
    out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)

    # out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
    b, n, d, _ = out.shape
    out = out.view(b, n, d, 2, 2)

    return out.float()


def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
    xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
    xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
    xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
    xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
    return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: Tensor) -> Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )

        return emb.unsqueeze(1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    
    # Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)

    # Block CUDA steam, but consistent with official codes:
    # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding


class MLPEmbedder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int):
        super().__init__()
        self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
        self.silu = nn.SiLU()
        self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)

    def forward(self, x: Tensor) -> Tensor:
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x: Tensor):
        x_dtype = x.dtype
        x = x.float()
        rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
        return (x * rrms).to(dtype=x_dtype) * self.scale


class QKNorm(torch.nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.query_norm = RMSNorm(dim)
        self.key_norm = RMSNorm(dim)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
        q = self.query_norm(q)
        k = self.key_norm(k)
        return q.to(v), k.to(v)


class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.norm = QKNorm(head_dim)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x: Tensor, pe: Tensor) -> Tensor:
        qkv = self.qkv(x)
        # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        B, L, _ = qkv.shape
        qkv = qkv.view(B, L, 3, self.num_heads, -1)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)
        q, k = self.norm(q, k, v)
        x = attention(q, k, v, pe=pe)
        x = self.proj(x)
        return x


@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor


class Modulation(nn.Module):
    def __init__(self, dim: int, double: bool):
        super().__init__()
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)

    def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
        out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)

        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )


class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
        super().__init__()

        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.img_mod = Modulation(hidden_size, double=True)
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

        self.txt_mod = Modulation(hidden_size, double=True)
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)

        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

    def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
        img_mod1, img_mod2 = self.img_mod(vec)
        txt_mod1, txt_mod2 = self.txt_mod(vec)

        # prepare image for attention
        img_modulated = self.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = self.img_attn.qkv(img_modulated)
         # img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        B, L, _ = img_qkv.shape
        H = self.num_heads
        D = img_qkv.shape[-1] // (3 * H)
        img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
        img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = self.txt_attn.qkv(txt_modulated)
        # txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        B, L, _ = txt_qkv.shape
        txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
        txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)

        attn = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * self.img_attn.proj(img_attn)
        img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
        return img, txt


class SingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float | None = None,
    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        # proj and mlp_out
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.norm = QKNorm(head_dim)

        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = nn.GELU(approximate="tanh")
        self.modulation = Modulation(hidden_size, double=False)

    def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
        mod, _ = self.modulation(vec)
        x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)

        # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)
        q, k = self.norm(q, k, v)

        # compute attention
        attn = attention(q, k, v, pe=pe)
        # compute activation in mlp stream, cat again and run second linear layer
        output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
        return x + mod.gate * output
    

class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x
   
   
class FluxParams:
    in_channels: int = 64
    vec_in_dim: int = 768
    context_in_dim: int = 4096
    hidden_size: int = 3072
    mlp_ratio: float = 4.0
    num_heads: int = 24
    depth: int = 19
    depth_single_blocks: int = 38
    axes_dim: list = [16, 56, 56]
    theta: int = 10_000
    qkv_bias: bool = True
    guidance_embed: bool = True


class Flux(nn.Module):
    """
    Transformer model for flow matching on sequences.
    """

    def __init__(self, params = FluxParams()):
        super().__init__()

        self.params = params
        self.in_channels = params.in_channels
        self.out_channels = self.in_channels
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
        self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
        self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
        )
        self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
                for _ in range(params.depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)

    def forward(
        self,
        img: Tensor,
        img_ids: Tensor,
        txt: Tensor,
        txt_ids: Tensor,
        timesteps: Tensor,
        y: Tensor,
        guidance: Tensor | None = None,
    ) -> Tensor:
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)
        vec = self.time_in(timestep_embedding(timesteps, 256))
        if self.params.guidance_embed:
            if guidance is None:
                raise ValueError("Didn't get guidance strength for guidance distilled model.")
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        pe = self.pe_embedder(ids)

        for block in self.double_blocks:
            img, txt = block(img=img, txt=txt, vec=vec, pe=pe)

        img = torch.cat((txt, img), 1)
        for block in self.single_blocks:
            img = block(img, vec=vec, pe=pe)
        img = img[:, txt.shape[1] :, ...]

        img = self.final_layer(img, vec)  # (N, T, patch_size ** 2 * out_channels)
        return img


def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
    bs, c, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "vec": vec.to(img.device),
    }


def time_shift(mu: float, sigma: float, t: Tensor):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


def get_lin_function(
    x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
    m = (y2 - y1) / (x2 - x1)
    b = y1 - m * x1
    return lambda x: m * x + b


def get_schedule(
    num_steps: int,
    image_seq_len: int,
    base_shift: float = 0.5,
    max_shift: float = 1.15,
    shift: bool = True,
) -> list[float]:
    # extra step for zero
    timesteps = torch.linspace(1, 0, num_steps + 1)

    # shifting the schedule to favor high timesteps for higher signal images
    if shift:
        # eastimate mu based on linear estimation between two points
        mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
        timesteps = time_shift(mu, 1.0, timesteps)

    return timesteps.tolist()


def denoise(
    model: Flux,
    # model input
    img: Tensor,
    img_ids: Tensor,
    txt: Tensor,
    txt_ids: Tensor,
    vec: Tensor,
    # sampling parameters
    timesteps: list[float],
    guidance: float = 4.0,
):
    # this is ignored for schnell
    guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
    for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1):
        t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
        pred = model(
            img=img,
            img_ids=img_ids,
            txt=txt,
            txt_ids=txt_ids,
            y=vec,
            timesteps=t_vec,
            guidance=guidance_vec,
        )
        img = img + (t_prev - t_curr) * pred
    return img


def unpack(x: Tensor, height: int, width: int) -> Tensor:
    return rearrange(
        x,
        "b (h w) (c ph pw) -> b c (h ph) (w pw)",
        h=math.ceil(height / 16),
        w=math.ceil(width / 16),
        ph=2,
        pw=2,
    )

@dataclass
class SamplingOptions:
    prompt: str
    width: int
    height: int
    guidance: float
    seed: int | None
    

def get_image(image) -> torch.Tensor | None:
    if image is None:
        return None
    image = Image.fromarray(image).convert("RGB")

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: 2.0 * x - 1.0),
    ])
    img: torch.Tensor = transform(image)
    return img[None, ...]


# ---------------- Demo ----------------


from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

sd = load_file(hf_hub_download(repo_id="lllyasviel/flux1-dev-bnb-nf4", filename="flux1-dev-bnb-nf4-v2.safetensors"))
sd = {k.replace("model.diffusion_model.", ""): v for k, v in sd.items() if "model.diffusion_model" in k}
model = Flux().to(dtype=torch.bfloat16, device="cuda")
result = model.load_state_dict(sd)
model_zero_init = False

# model = Flux().to(dtype=torch.bfloat16, device="cuda")
# result = model.load_state_dict(load_file("/storage/dev/nyanko/flux-dev/flux1-dev.sft"))

@spaces.GPU
@torch.no_grad()
def generate_image(
    prompt, width, height, guidance, inference_steps, seed,
    do_img2img, init_image, image2image_strength, resize_img,
    progress=gr.Progress(track_tqdm=True),
):
    if seed == 0:
        seed = int(random.random() * 1000000)
        
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_device = torch.device(device)
    
    global model, model_zero_init
    if not model_zero_init:
        model = model.to(torch_device)
        model_zero_init = True
    
    if do_img2img and init_image is not None:
        init_image = get_image(init_image)
        if resize_img:
            init_image = torch.nn.functional.interpolate(init_image, (height, width))
        else:
            h, w = init_image.shape[-2:]
            init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
            height = init_image.shape[-2]
            width = init_image.shape[-1]
        init_image = ae.encode(init_image.to(torch_device).to(torch.bfloat16)).latent_dist.sample()
        init_image =  (init_image - ae.config.shift_factor) * ae.config.scaling_factor

    generator = torch.Generator(device=device).manual_seed(seed)
    x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator) 
    
    num_steps = inference_steps
    timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)

    if do_img2img and init_image is not None:
        t_idx = int((1 - image2image_strength) * num_steps)
        t = timesteps[t_idx]
        timesteps = timesteps[t_idx:]
        x = t * x + (1.0 - t) * init_image.to(x.dtype)

    inp = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
    x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
    
    # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
    # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))

    x = unpack(x.float(), height, width)
    with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
        x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor 
        x = ae.decode(x).sample

    x = x.clamp(-1, 1)
    x = rearrange(x[0], "c h w -> h w c")
    img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
    
    return img, seed

def create_demo():
    with gr.Blocks(theme="bethecloud/storj_theme") as demo:
        gr.HTML(
            """
                <div style="text-align: center; margin: 0 auto;">
                <div
                    style="
                    display: inline-flex;
                    align-items: center;
                    gap: 0.8rem;
                    font-size: 1.75rem;
                    "
                >
                    <svg
                    width="0.65em"
                    height="0.65em"
                    viewBox="0 0 115 115"
                    fill="none"
                    xmlns="http://www.w3.org/2000/svg"
                    >
                    <rect width="23" height="23" fill="white"></rect>
                    <rect y="69" width="23" height="23" fill="white"></rect>
                    <rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="46" width="23" height="23" fill="white"></rect>
                    <rect x="46" y="69" width="23" height="23" fill="white"></rect>
                    <rect x="69" width="23" height="23" fill="black"></rect>
                    <rect x="69" y="69" width="23" height="23" fill="black"></rect>
                    <rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
                    <rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="115" y="46" width="23" height="23" fill="white"></rect>
                    <rect x="115" y="115" width="23" height="23" fill="white"></rect>
                    <rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                    <rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="92" y="69" width="23" height="23" fill="white"></rect>
                    <rect x="69" y="46" width="23" height="23" fill="white"></rect>
                    <rect x="69" y="115" width="23" height="23" fill="white"></rect>
                    <rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
                    <rect x="46" y="46" width="23" height="23" fill="black"></rect>
                    <rect x="46" y="115" width="23" height="23" fill="black"></rect>
                    <rect x="46" y="69" width="23" height="23" fill="black"></rect>
                    <rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
                    <rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
                    <rect x="23" y="69" width="23" height="23" fill="black"></rect>
                    </svg>
                    <h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
                    FLUX.1 dev NF4 Quantized Demo
                    </h1>
                </div>
                <p style="margin-bottom: 20px; font-size: 94%; line-height: 23px;">
                    12B param rectified flow transformer guidance-distilled from <a href="https://blackforestlabs.ai/">FLUX.1 [pro]</a>
                    <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md">[non-commercial license]</a> <a href="https://blackforestlabs.ai/announcing-black-forest-labs/">[blog]</a> <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">[model]</a>
                </p>
                </div>
            """
        )
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture")
                
                width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
                height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
                guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
                inference_steps = gr.Slider(
                    label="Inference steps",
                    minimum=1,
                    maximum=30,
                    step=1,
                    value=16,
                )
                seed = gr.Number(label="Seed", precision=-1)
                do_img2img = gr.Checkbox(label="Image to Image", value=False)
                init_image = gr.Image(label="Input Image", visible=False)
                image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
                resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
                generate_button = gr.Button("Generate")
            
            with gr.Column():
                output_image = gr.Image(label="Generated Image")
                output_seed = gr.Text(label="Used Seed")

        do_img2img.change(
            fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
            inputs=[do_img2img],
            outputs=[init_image, image2image_strength, resize_img]
        )

        generate_button.click(
            fn=generate_image,
            inputs=[prompt, width, height, guidance, inference_steps, seed, do_img2img, init_image, image2image_strength, resize_img],
            outputs=[output_image, output_seed]
        )
        
        examples = [
            "a tiny astronaut hatching from an egg on the moon",
            "a cat holding a sign that says hello world",
            "an anime illustration of a wiener schnitzel",
        ]

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch()