Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,883 Bytes
6bee32e 2b8b77d 6bee32e 2b8b77d 6bee32e 003a054 6bee32e 7bddc43 6bee32e 7bddc43 b365a93 6bee32e 7bddc43 6bee32e a821008 6bee32e 479e0d8 6bee32e 479e0d8 6bee32e 479e0d8 6bee32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import argparse
import spaces
from visualcloze import VisualClozeModel
import gradio as gr
import examples
import torch
from functools import partial
from data.prefix_instruction import get_layout_instruction
from huggingface_hub import snapshot_download
# Define the missing variables here
GUIDANCE = """
## How to use this demo:
1. Select a task example from the right side, or prepare your own in-context examples and query.
2. The grid will be filled with in-context examples and a query row.
3. You can modify the task description or add content descriptions.
4. Click "Generate" to create images following the pattern shown in examples.
"""
NOTE = """
**Note:** The examples on the right side demonstrate various tasks.
Click on any example to load it into the interface. You can then modify images or prompts as needed.
"""
CITATION = """
## Paper Citation
```
@article{liu2024visualcloze,
title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning},
author={Liu, Zhaoyang and Lian, Yuheng and Wang, Jianfeng and Zhou, Aojun and Liu, Jiashi and Ye, Hang and Chen, Kai and Wang, Jingdong and Zhao, Deli},
journal={arXiv preprint arXiv:2504.07960},
year={2024}
}
```
"""
max_grid_h = 5
max_grid_w = 5
default_grid_h = 2
default_grid_w = 3
default_upsampling_noise = 0.4
default_steps = 30
def create_demo(model):
with gr.Blocks(title="VisualCloze Demo") as demo:
gr.Markdown("# VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/lzyhha/VisualCloze">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://visualcloze.github.io/">
<img src='https://img.shields.io/badge/Project-Website-green'>
</a>
<a href="https://arxiv.org/abs/2504.07960">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/VisualCloze/VisualCloze">
<img src='https://img.shields.io/badge/VisualCloze%20checkpoint-HF%20Model-green?logoColor=violet&label=%F0%9F%A4%97%20Checkpoint'>
</a>
<a href="https://huggingface.co/datasets/VisualCloze/Graph200K">
<img src='https://img.shields.io/badge/VisualCloze%20datasets-HF%20Dataset-6B88E3?logoColor=violet&label=%F0%9F%A4%97%20Graph200k%20Dataset'>
</a>
</div>
""")
gr.Markdown(GUIDANCE)
# Pre-create all possible image components
all_image_inputs = []
rows = []
row_texts = []
with gr.Row():
with gr.Column(scale=2):
# Image grid
for i in range(max_grid_h):
# Add row label before each row
row_texts.append(gr.Markdown(
"## Query" if i == default_grid_h - 1 else f"## In-context Example {i + 1}",
elem_id=f"row_text_{i}",
visible=i < default_grid_h
))
with gr.Row(visible=i < default_grid_h, elem_id=f"row_{i}") as row:
rows.append(row)
for j in range(max_grid_w):
img_input = gr.Image(
label=f"In-context Example {i + 1}/{j + 1}" if i != default_grid_h - 1 else f"Query {j + 1}",
type="pil",
visible= i < default_grid_h and j < default_grid_w,
interactive=True,
elem_id=f"img_{i}_{j}"
)
all_image_inputs.append(img_input)
# Prompts
layout_prompt = gr.Textbox(
label="Layout Description (Auto-filled, Read-only)",
placeholder="Layout description will be automatically filled based on grid size...",
value=get_layout_instruction(default_grid_w, default_grid_h),
elem_id="layout_prompt",
interactive=False
)
task_prompt = gr.Textbox(
label="Task Description (Can be modified by referring to examples to perform custom tasks, but may lead to unstable results)",
placeholder="Describe what task should be performed...",
value="",
elem_id="task_prompt"
)
content_prompt = gr.Textbox(
label="(Optional) Content Description (Image caption, Editing instructions, etc.)",
placeholder="Describe the content requirements...",
value="",
elem_id="content_prompt"
)
generate_btn = gr.Button("Generate", elem_id="generate_btn")
gr.Markdown(NOTE)
grid_h = gr.Slider(minimum=0, maximum=max_grid_h-1, value=default_grid_h-1, step=1, label="Number of In-context Examples", elem_id="grid_h")
grid_w = gr.Slider(minimum=1, maximum=max_grid_w, value=default_grid_w, step=1, label="Task Columns", elem_id="grid_w")
with gr.Accordion("Advanced options", open=False):
seed = gr.Number(label="Seed (0 for random)", value=0, precision=0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1)
upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1)
upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.05)
gr.Markdown(CITATION)
# Output
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Results",
show_label=True,
elem_id="output_gallery",
columns=None,
rows=None,
height="auto",
allow_preview=True,
object_fit="contain"
)
gr.Markdown("# Task Examples")
gr.Markdown("Each click on a task may result in different examples.")
text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False)
dense_prediction_tasks = gr.Dataset(
samples=examples.dense_prediction_text,
label='Dense Prediction',
samples_per_page=1000,
components=[text_dense_prediction_tasks])
text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False)
conditional_generation_tasks = gr.Dataset(
samples=examples.conditional_generation_text,
label='Conditional Generation',
samples_per_page=1000,
components=[text_conditional_generation_tasks])
text_image_restoration_tasks = gr.Textbox(label="Task", visible=False)
image_restoration_tasks = gr.Dataset(
samples=examples.image_restoration_text,
label='Image Restoration',
samples_per_page=1000,
components=[text_image_restoration_tasks])
text_style_transfer_tasks = gr.Textbox(label="Task", visible=False)
style_transfer_tasks = gr.Dataset(
samples=examples.style_transfer_text,
label='Style Transfer',
samples_per_page=1000,
components=[text_style_transfer_tasks])
text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False)
style_condition_fusion_tasks = gr.Dataset(
samples=examples.style_condition_fusion_text,
label='Style Condition Fusion',
samples_per_page=1000,
components=[text_style_condition_fusion_tasks])
text_tryon_tasks = gr.Textbox(label="Task", visible=False)
tryon_tasks = gr.Dataset(
samples=examples.tryon_text,
label='Virtual Try-On',
samples_per_page=1000,
components=[text_tryon_tasks])
text_relighting_tasks = gr.Textbox(label="Task", visible=False)
relighting_tasks = gr.Dataset(
samples=examples.relighting_text,
label='Relighting',
samples_per_page=1000,
components=[text_relighting_tasks])
text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
photodoodle_tasks = gr.Dataset(
samples=examples.photodoodle_text,
label='Photodoodle',
samples_per_page=1000,
components=[text_photodoodle_tasks])
text_editing_tasks = gr.Textbox(label="Task", visible=False)
editing_tasks = gr.Dataset(
samples=examples.editing_text,
label='Editing',
samples_per_page=1000,
components=[text_editing_tasks])
text_unseen_tasks = gr.Textbox(label="Task", visible=False)
unseen_tasks = gr.Dataset(
samples=examples.unseen_tasks_text,
label='Unseen Tasks (May produce unstable effects)',
samples_per_page=1000,
components=[text_unseen_tasks])
gr.Markdown("# Subject-driven Tasks Examples")
text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
subject_driven_tasks = gr.Dataset(
samples=examples.subject_driven_text,
label='Subject-driven Generation',
samples_per_page=1000,
components=[text_subject_driven_tasks])
text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
condition_subject_fusion_tasks = gr.Dataset(
samples=examples.condition_subject_fusion_text,
label='Condition+Subject Fusion',
samples_per_page=1000,
components=[text_condition_subject_fusion_tasks])
text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
style_transfer_with_subject_tasks = gr.Dataset(
samples=examples.style_transfer_with_subject_text,
label='Style Transfer with Subject',
samples_per_page=1000,
components=[text_style_transfer_with_subject_tasks])
text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
condition_subject_style_fusion_tasks = gr.Dataset(
samples=examples.condition_subject_style_fusion_text,
label='Condition+Subject+Style Fusion',
samples_per_page=1000,
components=[text_condition_subject_style_fusion_tasks])
text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
editing_with_subject_tasks = gr.Dataset(
samples=examples.editing_with_subject_text,
label='Editing with Subject',
samples_per_page=1000,
components=[text_editing_with_subject_tasks])
text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
image_restoration_with_subject_tasks = gr.Dataset(
samples=examples.image_restoration_with_subject_text,
label='Image Restoration with Subject',
samples_per_page=1000,
components=[text_image_restoration_with_subject_tasks])
def update_grid(h, w):
actual_h = h + 1
model.set_grid_size(actual_h, w)
updates = []
# Update image component visibility
for i in range(max_grid_h * max_grid_w):
curr_row = i // max_grid_w
curr_col = i % max_grid_w
updates.append(
gr.update(
label=f"In-context Example {curr_row + 1}/{curr_col + 1}" if curr_row != actual_h - 1 else f"Query {curr_col + 1}",
elem_id=f"img_{curr_row}_{curr_col}",
visible=(curr_row < actual_h and curr_col < w)))
# Update row visibility and labels
updates_row = []
updates_row_text = []
for i in range(max_grid_h):
updates_row.append(gr.update(f"row_{i}", visible=(i < actual_h)))
updates_row_text.append(
gr.update(
elem_id=f"row_text_{i}",
visible=i < actual_h,
value="## Query" if i == actual_h - 1 else f"## In-context Example {i + 1}",
)
)
updates.extend(updates_row)
updates.extend(updates_row_text)
updates.append(gr.update(elem_id="layout_prompt", value=get_layout_instruction(w, actual_h)))
return updates
def generate_image(*inputs):
images = []
if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
raise gr.Error('Please wait for the loading to complete.')
for i in range(model.grid_h):
images.append([])
for j in range(model.grid_w):
images[i].append(inputs[i * max_grid_w + j])
if i != model.grid_h - 1:
if inputs[i * max_grid_w + j] is None:
raise gr.Error('Please upload in-context examples. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again.')
seed, cfg, steps, upsampling_steps, upsampling_noise, layout_text, task_text, content_text = inputs[-8:]
try:
results = generate(
images,
[layout_text, task_text, content_text],
seed=seed, cfg=cfg, steps=steps,
upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
)
except Exception as e:
raise gr.Error('Process error. Possible that the task examples have not finished loading yet, and you can try waiting a few seconds before clicking the button again. Error: ' + str(e))
output = gr.update(
elem_id='output_gallery',
value=results,
columns=min(len(results), 2),
rows=int(len(results) / 2 + 0.5))
return output
def process_tasks(task, func):
outputs = func(task)
mask = outputs[0]
state = outputs[1:8]
if state[5] is None:
state[5] = default_upsampling_noise
if state[6] is None:
state[6] = default_steps
images = outputs[8:-len(mask)]
output = outputs[-len(mask):]
for i in range(len(mask)):
if mask[i] == 1:
images.append(None)
else:
images.append(output[-len(mask) + i])
state[0] = state[0] - 1
cur_hrid_h = state[0]
cur_hrid_w = state[1]
current_example = [None] * 25
for i, image in enumerate(images):
pos = (i // cur_hrid_w) * 5 + (i % cur_hrid_w)
if image is not None:
current_example[pos] = image
update_grid(cur_hrid_h, cur_hrid_w)
output = gr.update(
elem_id='output_gallery',
value=[o for o, m in zip(output, mask) if m == 1],
columns=min(sum(mask), 2),
rows=int(sum(mask) / 2 + 0.5))
return [output] + current_example + state
dense_prediction_tasks.click(
partial(process_tasks, func=examples.process_dense_prediction_tasks),
inputs=[dense_prediction_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full",
show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
conditional_generation_tasks.click(
partial(process_tasks, func=examples.process_conditional_generation_tasks),
inputs=[conditional_generation_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
image_restoration_tasks.click(
partial(process_tasks, func=examples.process_image_restoration_tasks),
inputs=[image_restoration_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_transfer_tasks.click(
partial(process_tasks, func=examples.process_style_transfer_tasks),
inputs=[style_transfer_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_condition_fusion_tasks.click(
partial(process_tasks, func=examples.process_style_condition_fusion_tasks),
inputs=[style_condition_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
relighting_tasks.click(
partial(process_tasks, func=examples.process_relighting_tasks),
inputs=[relighting_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
tryon_tasks.click(
partial(process_tasks, func=examples.process_tryon_tasks),
inputs=[tryon_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
photodoodle_tasks.click(
partial(process_tasks, func=examples.process_photodoodle_tasks),
inputs=[photodoodle_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
editing_tasks.click(
partial(process_tasks, func=examples.process_editing_tasks),
inputs=[editing_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
unseen_tasks.click(
partial(process_tasks, func=examples.process_unseen_tasks),
inputs=[unseen_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
subject_driven_tasks.click(
partial(process_tasks, func=examples.process_subject_driven_tasks),
inputs=[subject_driven_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
style_transfer_with_subject_tasks.click(
partial(process_tasks, func=examples.process_style_transfer_with_subject_tasks),
inputs=[style_transfer_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
condition_subject_fusion_tasks.click(
partial(process_tasks, func=examples.process_condition_subject_fusion_tasks),
inputs=[condition_subject_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
condition_subject_style_fusion_tasks.click(
partial(process_tasks, func=examples.process_condition_subject_style_fusion_tasks),
inputs=[condition_subject_style_fusion_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
editing_with_subject_tasks.click(
partial(process_tasks, func=examples.process_editing_with_subject_tasks),
inputs=[editing_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
image_restoration_with_subject_tasks.click(
partial(process_tasks, func=examples.process_image_restoration_with_subject_tasks),
inputs=[image_restoration_with_subject_tasks],
outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
show_progress="full")
# Initialize grid
model.set_grid_size(default_grid_h, default_grid_w)
# Connect event processing function to all components that need updating
output_components = all_image_inputs + rows + row_texts + [layout_prompt]
grid_h.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
grid_w.change(fn=update_grid, inputs=[grid_h, grid_w], outputs=output_components)
# Modify generate button click event
generate_btn.click(
fn=generate_image,
inputs=all_image_inputs + [seed, cfg, steps, upsampling_steps, upsampling_noise] + [layout_prompt, task_prompt, content_prompt],
outputs=output_gallery
)
return demo
@spaces.GPU()
def generate(
images,
prompts,
seed, cfg, steps,
upsampling_steps, upsampling_noise):
with torch.no_grad():
return model.process_images(
images=images,
prompts=prompts,
seed=seed,
cfg=cfg,
steps=steps,
upsampling_steps=upsampling_steps,
upsampling_noise=upsampling_noise)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="checkpoints/visualcloze-384-lora.pth")
parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
parser.add_argument("--resolution", type=int, default=384)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="checkpoints")
# Initialize model
model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision)
# Create Gradio demo
demo = create_demo(model)
# Start Gradio server
demo.launch() |