File size: 18,252 Bytes
747ccea fe67895 90e9b67 0fbbd89 f779047 54a4802 e74c3bc 0e5afe0 0fbbd89 6da265e c36dc6b 6da265e c36dc6b 6da265e 0fbbd89 90e9b67 c3ae439 90e9b67 c36dc6b de57dc5 6da265e 4f42976 90e9b67 747ccea 0fbbd89 8f71308 0fbbd89 ca69132 c3ae439 0fbbd89 6da265e 0fbbd89 54e6271 c36dc6b 0fbbd89 54e6271 da419ba 0fbbd89 c3d05ea 90e9b67 0fbbd89 95a32d4 f6e3821 8f71308 95a32d4 0fbbd89 90e9b67 4f42976 884361c ea2c4cf 0fbbd89 f6e3821 747ccea 91c1d45 90e9b67 0fbbd89 4f42976 90e9b67 4f42976 90e9b67 c3ae439 90e9b67 8321675 0fbbd89 4f42976 0fbbd89 f6e3821 ea2c4cf 0fbbd89 884361c 0fbbd89 884361c 4f42976 ea2c4cf 4f42976 ea2c4cf 4f42976 f6e3821 4f42976 ea2c4cf 0fbbd89 4f42976 ea2c4cf 0fbbd89 ca69132 0fbbd89 ca69132 0fbbd89 ca69132 f6e3821 ca69132 0fbbd89 ca69132 884361c 0fbbd89 4f42976 0fbbd89 4f42976 0fbbd89 f6e3821 0fbbd89 f6e3821 2bb387f f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 66fa514 8f71308 f6e3821 2bb387f f6e3821 8f71308 f6e3821 66fa514 4f42976 66fa514 4f42976 884361c 0fbbd89 884361c 8f71308 2bb387f 2013128 884361c 71edfae 95a32d4 71edfae 2013128 f6e3821 2013128 0fbbd89 f6e3821 2013128 0fbbd89 2013128 0fbbd89 2bb387f 0fbbd89 2bb387f 0fbbd89 884361c 95a32d4 884361c 0fbbd89 ca69132 0fbbd89 f6e3821 ca69132 0fbbd89 ca69132 0fbbd89 ca69132 884361c ca69132 884361c ca69132 884361c 4f42976 884361c 0fbbd89 95a32d4 ca69132 95a32d4 ca69132 0fbbd89 f6e3821 ca69132 2bb387f ca69132 0fbbd89 ca69132 f6e3821 ca69132 8f71308 2bb387f 2013128 0fbbd89 2013128 f6e3821 2013128 0fbbd89 f6e3821 2013128 0fbbd89 2013128 ca69132 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 f6e3821 0fbbd89 4f42976 71edfae 4f42976 ca69132 95a32d4 f6e3821 4f42976 884361c 4f42976 747ccea 0fbbd89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
from typing import List, Dict, Tuple
# μΆλ‘ API ν΄λΌμ΄μΈνΈ μ€μ
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN"))
def load_code(filename: str) -> str:
try:
with open(filename, 'r', encoding='utf-8') as file:
return file.read()
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def load_parquet(filename: str) -> str:
try:
df = pd.read_parquet(filename, engine='pyarrow')
return df.head(10).to_markdown(index=False)
except FileNotFoundError:
return f"{filename} νμΌμ μ°Ύμ μ μμ΅λλ€."
except Exception as e:
return f"νμΌμ μ½λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
# μ½λ νμΌ λ‘λ
fashion_code = load_code('fashion.cod')
uhdimage_code = load_code('uhdimage.cod')
MixGEN_code = load_code('mgen.cod')
# μ΄κΈ° Parquet νμΌ λ‘λ (κΈ°μ‘΄ test.parquet)
test_parquet_content = load_parquet('test.parquet')
def respond(
message: str,
history: List[Dict[str, str]],
system_message: str = "",
max_tokens: int = 4000,
temperature: float = 0.7,
top_p: float = 0.9,
) -> str:
# μμ€ν
ν둬ννΈ μ€μ
system_prefix = """λ°λμ νκΈλ‘ λ΅λ³ν κ². λλ μ£Όμ΄μ§ μμ€μ½λλ₯Ό κΈ°λ°μΌλ‘ "μλΉμ€ μ¬μ© μ€λͺ
λ° μλ΄, Q&Aλ₯Ό νλ μν μ΄λ€". μμ£Ό μΉμ νκ³ μμΈνκ² 4000ν ν° μ΄μ Markdown νμμΌλ‘ μμ±νλΌ. λλ μ½λλ₯Ό κΈ°λ°μΌλ‘ μ¬μ© μ€λͺ
λ° μ§μ μλ΅μ μ§ννλ©°, μ΄μ©μμκ² λμμ μ£Όμ΄μΌ νλ€. μ΄μ©μκ° κΆκΈν΄ ν λ§ν λ΄μ©μ μΉμ νκ² μλ €μ£Όλλ‘ νλΌ. μ½λ μ 체 λ΄μ©μ λν΄μλ 보μμ μ μ§νκ³ , ν€ κ° λ° μλν¬μΈνΈμ ꡬ체μ μΈ λͺ¨λΈμ 곡κ°νμ§ λ§λΌ."""
# νΉμ λͺ
λ Ήμ΄ μ²λ¦¬
if message.lower() == "ν¨μ
μ½λ μ€ν":
system_prefix += f"\n\nν¨μ
μ½λ λ΄μ©:\n```python\n{fashion_code}\n```"
message = "ν¨μ
κ°μνΌν
μ λν λ΄μ©μ νμ΅νμκ³ , μ€λͺ
ν μ€λΉκ° λμ΄μλ€κ³ μλ¦¬κ³ μλΉμ€ URL(https://aiqcamp-fash.hf.space)μ ν΅ν΄ ν
μ€νΈ ν΄λ³΄λΌκ³ μΆλ ₯νλΌ."
elif message.lower() == "uhd μ΄λ―Έμ§ μ½λ μ€ν":
system_prefix += f"\n\nUHD μ΄λ―Έμ§ μ½λ λ΄μ©:\n```python\n{uhdimage_code}\n```"
message = "UHD μ΄λ―Έμ§ μμ±μ λν λ΄μ©μ νμ΅νμκ³ , μ€λͺ
ν μ€λΉκ° λμ΄μλ€κ³ μλ¦¬κ³ μλΉμ€ URL(https://openfree-ultpixgen.hf.space)μ ν΅ν΄ ν
μ€νΈ ν΄λ³΄λΌκ³ μΆλ ₯νλΌ."
elif message.lower() == "mixgen μ½λ μ€ν":
system_prefix += f"\n\nMixGEN μ½λ λ΄μ©:\n```python\n{MixGEN_code}\n```"
message = "MixGEN3 μ΄λ―Έμ§ μμ±μ λν λ΄μ©μ νμ΅νμκ³ , μ€λͺ
ν μ€λΉκ° λμ΄μλ€κ³ μλ¦¬κ³ μλΉμ€ URL(https://openfree-mixgen3.hf.space)μ ν΅ν΄ ν
μ€νΈ ν΄λ³΄λΌκ³ μΆλ ₯νλΌ."
elif message.lower() == "test.parquet μ€ν":
# historyμμ parquet_content μ°ΎκΈ°
parquet_content = ""
for item in history:
if item['role'] == 'assistant' and 'test.parquet νμΌ λ΄μ©' in item['content']:
try:
parquet_content = item['content'].split("```markdown\n")[1].split("\n```")[0]
except IndexError:
parquet_content = ""
break
system_prefix += f"\n\ntest.parquet νμΌ λ΄μ©:\n```markdown\n{parquet_content}\n```"
message = "test.parquet νμΌμ λν λ΄μ©μ νμ΅νμκ³ , κ΄λ ¨ μ€λͺ
λ° Q&Aλ₯Ό μ§νν μ€λΉκ° λμ΄μλ€. κΆκΈν μ μ΄ μμΌλ©΄ λ¬Όμ΄λ³΄λΌ."
elif message.lower() == "csv μ
λ‘λ":
message = "CSV νμΌμ μ
λ‘λνλ €λ©΄ λ λ²μ§Έ νμ μ¬μ©νμΈμ."
# μμ€ν
λ©μμ§μ λν κΈ°λ‘ κ²°ν©
messages = [{"role": "system", "content": system_prefix}]
for chat in history:
messages.append({"role": chat['role'], "content": chat['content']})
messages.append({"role": "user", "content": message})
response = ""
try:
# λͺ¨λΈμ λ©μμ§ μ μ‘ λ° μλ΅ λ°κΈ°
for msg in hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
response += token
yield response
except Exception as e:
yield f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
def upload_csv(file_path: str) -> Tuple[str, str]:
try:
# CSV νμΌ μ½κΈ°
df = pd.read_csv(file_path, sep=',')
# νμ μ»¬λΌ νμΈ
required_columns = {'id', 'text', 'label', 'metadata'}
available_columns = set(df.columns)
missing_columns = required_columns - available_columns
if missing_columns:
return f"CSV νμΌμ λ€μ νμ 컬λΌμ΄ λλ½λμμ΅λλ€: {', '.join(missing_columns)}", ""
# λ°μ΄ν° ν΄λ μ§
df.drop_duplicates(inplace=True)
df.fillna('', inplace=True)
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = os.path.splitext(os.path.basename(file_path))[0] + '.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet νμΌ λ΄μ© 미리보기
parquet_content = load_parquet(parquet_filename)
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλκ³ λ³νλμμ΅λλ€.", parquet_content
except Exception as e:
return f"CSV νμΌ μ
λ‘λ λ° λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", ""
def upload_parquet(file_path: str) -> Tuple[str, str, Dict]:
try:
# Parquet νμΌ μ½κΈ°
df = pd.read_parquet(file_path, engine='pyarrow')
# MarkdownμΌλ‘ λ³ννμ¬ λ―Έλ¦¬λ³΄κΈ°
parquet_content = df.to_markdown(index=False)
return "Parquet νμΌμ΄ μ±κ³΅μ μΌλ‘ μ
λ‘λλμμ΅λλ€.", parquet_content, df.to_json()
except Exception as e:
return f"Parquet νμΌ μ
λ‘λ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", {}
def text_to_parquet(text: str) -> Tuple[str, str, bytes]:
try:
# ν
μ€νΈλ₯Ό DataFrameμΌλ‘ λ³ν (κ° νμ μ½€λ§λ‘ ꡬλΆ)
data = [line.split(',') for line in text.strip().split('\n')]
df = pd.DataFrame(data, columns=['id', 'text', 'label', 'metadata'])
# λ°μ΄ν° μ ν μ΅μ ν
df = df.astype({'id': 'int32', 'text': 'string', 'label': 'category', 'metadata': 'string'})
# Parquet νμΌλ‘ λ³ν
parquet_filename = 'text_to_parquet.parquet'
df.to_parquet(parquet_filename, engine='pyarrow', compression='snappy')
# Parquet νμΌ λ΄μ© 미리보기
parquet_content = load_parquet(parquet_filename)
# νμΌ λ°μ΄ν°λ₯Ό λ°μ΄λλ¦¬λ‘ μ½κΈ°
with open(parquet_filename, "rb") as f:
data = f.read()
return f"{parquet_filename} νμΌμ΄ μ±κ³΅μ μΌλ‘ λ³νλμμ΅λλ€.", parquet_content, data
except Exception as e:
return f"ν
μ€νΈ λ³ν μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}", "", b""
# CSS μ€μ
css = """
footer {
visibility: hidden;
}
#chatbot-container, #chatbot-data-upload {
height: 600px;
overflow-y: scroll;
}
#chatbot-container .message, #chatbot-data-upload .message {
font-size: 14px;
}
"""
# Gradio Blocks μΈν°νμ΄μ€ μ€μ
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
gr.Markdown("# LLM μλΉμ€ μΈν°νμ΄μ€")
# 첫 λ²μ§Έ ν: μ±λ΄
with gr.Tab("μ±λ΄"):
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot = gr.Chatbot(label="μ±λ΄", type="messages", elem_id="chatbot-container")
msg = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send = gr.Button("μ μ‘")
with gr.Accordion("μμ€ν
ν둬ννΈ λ° μ΅μ
μ€μ ", open=False):
system_message = gr.Textbox(label="System Message", value="λλ AI μ‘°μΈμ μν μ΄λ€.")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="Max Tokens")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P")
# μ±λ΄ λ©μμ§ μ²λ¦¬ ν¨μ
def handle_message(message, history, system_message, max_tokens, temperature, top_p):
history = history or []
history.append({"role": "user", "content": message})
try:
# μλ΅ μμ±
response_gen = respond(message, history, system_message, max_tokens, temperature, top_p)
response = ""
for partial in response_gen:
response = partial # μ΅μ’
μλ΅
history.append({"role": "assistant", "content": response})
except Exception as e:
response = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
history.append({"role": "assistant", "content": response})
return history, ""
send.click(
handle_message,
inputs=[msg, chatbot, system_message, max_tokens, temperature, top_p],
outputs=[chatbot, msg]
)
# μμ 볡μ
with gr.Accordion("μμ ", open=False):
gr.Examples(
examples=[
["ν¨μ
μ½λ μ€ν"],
["UHD μ΄λ―Έμ§ μ½λ μ€ν"],
["MixGEN μ½λ μ€ν"],
["test.parquet μ€ν"],
["μμΈν μ¬μ© λ°©λ²μ λ§μΉ νλ©΄μ 보면μ μ€λͺ
νλ―μ΄ 4000 ν ν° μ΄μ μμΈν μ€λͺ
νλΌ"],
["FAQ 20건μ μμΈνκ² μμ±νλΌ. 4000ν ν° μ΄μ μ¬μ©νλΌ."],
["μ¬μ© λ°©λ²κ³Ό μ°¨λ³μ , νΉμ§, κ°μ μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μ νλΈ μμ μ€ν¬λ¦½νΈ ννλ‘ μμ±νλΌ"],
["λ³Έ μλΉμ€λ₯Ό SEO μ΅μ ννμ¬ λΈλ‘κ·Έ ν¬μ€νΈ(λ°°κ²½ λ° νμμ±, κΈ°μ‘΄ μ μ¬ μλΉμ€μ λΉκ΅νμ¬ νΉμ₯μ , νμ©μ², κ°μΉ, κΈ°λν¨κ³Ό, κ²°λ‘ μ ν¬ν¨)λ‘ 4000 ν ν° μ΄μ μμ±νλΌ"],
["νΉν μΆμμ νμ©ν κΈ°μ λ° λΉμ¦λμ€λͺ¨λΈ μΈ‘λ©΄μ ν¬ν¨νμ¬ νΉν μΆμμ ꡬμ±μ λ§κ² νμ μ μΈ μ°½μ λ°λͺ
λ΄μ©μ μ€μ¬μΌλ‘ 4000 ν ν° μ΄μ μμ±νλΌ."],
["κ³μ μ΄μ΄μ λ΅λ³νλΌ"],
],
inputs=msg,
label="μμ μ ν",
)
# λ λ²μ§Έ ν: λ°μ΄ν° λ³ν
with gr.Tab("λ°μ΄ν° λ³ν"):
gr.Markdown("### CSV νμΌ μ
λ‘λ λ° Parquet λ³ν")
with gr.Row():
with gr.Column():
csv_file = gr.File(label="CSV νμΌ μ
λ‘λ", type="filepath")
upload_button = gr.Button("μ
λ‘λ λ° λ³ν")
upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_button = gr.Download(label="Parquet νμΌ λ€μ΄λ‘λ")
def handle_csv_upload(file_path: str) -> Tuple[str, str, Tuple[bytes, str]]:
message, parquet_filename = upload_csv(file_path)
if parquet_filename:
# Parquet νμΌ μ½κΈ°
with open(parquet_filename, "rb") as f:
data = f.read()
filename = os.path.basename(parquet_filename)
return message, parquet_filename, (data, filename)
else:
return message, "", None
upload_button.click(
handle_csv_upload,
inputs=csv_file,
outputs=[upload_status, parquet_preview, download_button]
)
gr.Markdown("### κΈ°μ‘΄ Parquet νμΌ")
gr.Markdown(f"**test.parquet νμΌ λ΄μ©:**\n```markdown\n{test_parquet_content}\n```")
# μΈ λ²μ§Έ ν: μ±λ΄ λ°μ΄ν° μ
λ‘λ
with gr.Tab("μ±λ΄ λ°μ΄ν° μ
λ‘λ"):
gr.Markdown("### Parquet νμΌ μ
λ‘λ λ° μ§λ¬ΈνκΈ°")
with gr.Row():
with gr.Column():
parquet_upload = gr.File(label="Parquet νμΌ μ
λ‘λ", type="filepath")
parquet_upload_button = gr.Button("μ
λ‘λ")
parquet_upload_status = gr.Textbox(label="μ
λ‘λ μν", interactive=False)
parquet_preview_chat = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
parquet_data_state = gr.State()
def handle_parquet_upload(file_path: str) -> Tuple[str, str, Dict]:
message, parquet_content, parquet_json = upload_parquet(file_path)
if parquet_json:
return message, parquet_content, parquet_json
else:
return message, "", {}
parquet_upload_button.click(
handle_parquet_upload,
inputs=parquet_upload,
outputs=[parquet_upload_status, parquet_preview_chat, parquet_data_state]
)
gr.Markdown("### LLMκ³Ό λννκΈ°")
chatbot_data_upload = gr.Chatbot(label="μ±λ΄ λ°μ΄ν° μ
λ‘λ", type="messages", elem_id="chatbot-data-upload")
msg_data_upload = gr.Textbox(label="λ©μμ§ μ
λ ₯", placeholder="μ¬κΈ°μ λ©μμ§λ₯Ό μ
λ ₯νμΈμ...")
send_data_upload = gr.Button("μ μ‘")
def handle_message_data_upload(message: str, history: List[Dict[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, parquet_data: Dict) -> Tuple[List[Dict[str, str]], str]:
history = history or []
history.append({"role": "user", "content": message})
try:
# Parquet λ°μ΄ν°λ₯Ό νμ©ν μ μλ λ‘μ§ μΆκ° κ°λ₯
response_gen = respond(message, history, system_message, max_tokens, temperature, top_p)
response = ""
for partial in response_gen:
response = partial
history.append({"role": "assistant", "content": response})
except Exception as e:
response = f"μΆλ‘ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
history.append({"role": "assistant", "content": response})
return history, ""
send_data_upload.click(
handle_message_data_upload,
inputs=[msg_data_upload, chatbot_data_upload, system_message, max_tokens, temperature, top_p, parquet_data_state],
outputs=[chatbot_data_upload, msg_data_upload]
)
# λ€ λ²μ§Έ ν: ν
μ€νΈ to csv to parquet λ³ν
with gr.Tab("ν
μ€νΈ to csv to parquet λ³ν"):
gr.Markdown("### ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ CSVλ‘ λ³ν ν ParquetμΌλ‘ μλ μ νλ©λλ€.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="ν
μ€νΈ μ
λ ₯ (κ° νμ `id,text,label,metadata` νμμΌλ‘ μ
λ ₯)",
lines=10,
placeholder="μ: 1,Sample Text,Label1,Metadata1\n2,Another Text,Label2,Metadata2"
)
convert_button = gr.Button("λ³ν λ° λ€μ΄λ‘λ")
convert_status = gr.Textbox(label="λ³ν μν", interactive=False)
parquet_preview_convert = gr.Markdown(label="Parquet νμΌ λ―Έλ¦¬λ³΄κΈ°")
download_parquet_convert = gr.Download(label="Parquet νμΌ λ€μ΄λ‘λ")
def handle_text_to_parquet(text: str) -> Tuple[str, str, Tuple[bytes, str]]:
message, parquet_content, file_data = text_to_parquet(text)
if file_data:
filename = 'text_to_parquet.parquet'
return message, parquet_content, (file_data, filename)
else:
return message, "", None
convert_button.click(
handle_text_to_parquet,
inputs=text_input,
outputs=[convert_status, parquet_preview_convert, download_parquet_convert]
)
# μ£Όμ μ¬ν
gr.Markdown("## μ£Όμ μ¬ν")
gr.Markdown("""
- **CSV μ
λ‘λ**: CSV νμΌμ μ
λ‘λνλ©΄ μλμΌλ‘ Parquet νμΌλ‘ λ³νλ©λλ€. CSV νμΌμ λ°λμ **μ½€λ§(`,`)**λ‘ κ΅¬λΆλμ΄μΌ ν©λλ€.
- **Parquet 미리보기**: μ
λ‘λλ Parquet νμΌμ 첫 10κ° νμ΄ λ―Έλ¦¬λ³΄κΈ°λ‘ νμλ©λλ€.
- **LLMκ³Όμ λν**: λ³νλ Parquet νμΌ λ΄μ©μ κΈ°λ°μΌλ‘ LLMμ΄ μλ΅μ μμ±ν©λλ€.
- **Parquet λ€μ΄λ‘λ**: λ³νλ Parquet νμΌμ λ€μ΄λ‘λνλ €λ©΄ λ³νλ νμΌ μμ λ€μ΄λ‘λ λ§ν¬λ₯Ό ν΄λ¦νμΈμ.
- **μ±λ΄ λ°μ΄ν° μ
λ‘λ**: μ±λ΄ λ°μ΄ν° μ
λ‘λ νμμ Parquet νμΌμ μ
λ‘λνλ©΄ ν΄λΉ λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ§λ¬Έκ³Ό λ΅λ³μ μ§νν μ μμ΅λλ€.
- **ν
μ€νΈ to csv to parquet**: λ€ λ²μ§Έ νμμ ν
μ€νΈλ₯Ό μ
λ ₯νλ©΄ μλμΌλ‘ CSVλ‘ λ³νλκ³ , λ€μ Parquet νμΌλ‘ μ νλμ΄ λ€μ΄λ‘λν μ μμ΅λλ€.
""")
gr.Markdown("### Gradio μΈν°νμ΄μ€λ₯Ό μ¬μ©νμ¬ LLM λͺ¨λΈκ³Ό μνΈμμ©νμΈμ!")
if __name__ == "__main__":
# share=Trueλ Hugging Face Spacesμμ μ§μλμ§ μμΌλ―λ‘ μ κ±°
demo.launch()
|