File size: 12,026 Bytes
96d612b 45bf27f 96d612b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
import subprocess
from huggingface_hub import hf_hub_download
from transformers import pipeline
# Initialize the translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--height', type=int, default=2560, help='image height')
parser.add_argument('--width', type=int, default=5120, help='image width')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
parser.add_argument('--config_c', type=str,
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
parser.add_argument('--prompt', type=str,
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
args = parser.parse_args()
return args
def clear_image():
return None
def load_message(height, width, seed, prompt, args, stage_a_tiled):
args.height = height
args.width = width
args.seed = seed
args.prompt = prompt + ' rich detail, 4k, high quality'
args.stage_a_tiled = stage_a_tiled
return args
def is_korean(text):
return any('\uac00' <= char <= '\ud7a3' for char in text)
def translate_if_korean(text):
if is_korean(text):
translated = translator(text, max_length=512)[0]['translation_text']
print(f"Translated from Korean: {text} -> {translated}")
return translated
return text
@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
global args
# Translate the prompt if it's in Korean
prompt = translate_if_korean(prompt)
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
batch_size = 1
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for _, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
return imgs[0]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1><center>์ด๊ณ ํด์๋ UHD ์ด๋ฏธ์ง(์ต๋ 5120 X 4096 ํฝ์
) ์์ฑ</center></h1>")
with gr.Row():
prompt = gr.Textbox(
label="Text Prompt (ํ๊ธ ๋๋ ์์ด๋ก ์
๋ ฅํ์ธ์)",
show_label=False,
max_lines=1,
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (Enter your prompt in Korean or English)",
container=False
)
polish_button = gr.Button("์ ์ถ! (Submit!)", scale=0)
output_img = gr.Image(label="Output Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(
label="Random Seed",
value=123,
step=1,
minimum=0,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1536,
maximum=5120,
step=32,
value=4096
)
height = gr.Slider(
label="Height",
minimum=1536,
maximum=4096,
step=32,
value=2304
)
with gr.Row():
cfg = gr.Slider(
label="CFG",
minimum=3,
maximum=10,
step=0.1,
value=4
)
timesteps = gr.Slider(
label="Timesteps",
minimum=10,
maximum=50,
step=1,
value=20
)
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
clear_button = gr.Button("Clear!")
gr.Examples(
examples=[
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
"๋ ๋ฎ์ธ ์ฐ๋งฅ์ ์ฅ์ํ ์ ๊ฒฝ, ํธ๋ฅธ ํ๋์ ๋ฐฐ๊ฒฝ์ผ๋ก ํ ๊ณ ์ํ ํธ์๊ฐ ์๋ ๋ชจ์ต",
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
"์ค์จํฐ๋ฅผ ์
์ ์
์ด",
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
"๊ณจ๋ ๋ฆฌํธ๋ฆฌ๋ฒ ๊ฐ์์ง๊ฐ ํธ๋ฅธ ์๋๋ฐญ์์ ๋นจ๊ฐ ๊ณต์ ์ซ๋ ๊ท์ฌ์ด ๋ชจ์ต",
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
"์บ๋๋ค ๋ฐดํ ๊ตญ๋ฆฝ๊ณต์์ ์๋ฆ๋ค์ด ํ๊ฒฝ, ์ฒญ๋ก์ ํธ์์ ๋ ๋ฎ์ธ ์ฐ๋ค, ์ธ์ฐฝํ ์๋๋ฌด ์ฒ์ด ์ด์ฐ๋ฌ์ง ๋ชจ์ต",
"๊ท์ฌ์ด ์์ธ๊ฐ ์์กฐ์์ ๋ชฉ์ํ๋ ๋ชจ์ต, ๊ฑฐํ์ ๋๋ฌ์ธ์ธ ์ฑ ์ด์ง ์ ์ ๋ชจ์ต์ผ๋ก ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๊ณ ์์",
],
inputs=[prompt],
outputs=[output_img],
examples_per_page=5
)
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
polish_button.click(clear_image, inputs=[], outputs=output_img)
def download_with_wget(url, save_path):
try:
subprocess.run(['wget', url, '-O', save_path], check=True)
print(f"Downloaded to {save_path}")
except subprocess.CalledProcessError as e:
print(f"Error downloading file: {e}")
def download_model():
urls = [
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
]
for file_url in urls:
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
download_model()
config_file = args.config_c
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
config_file_b = args.config_b
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
pretrained_path = args.pretrained_path
sdd = torch.load(pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
demo.launch(debug=True, share=True, auth=("gini","pick")) |