Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import torch | |
from torchvision import transforms as T | |
def calc_result_confidence (model_output): | |
probs = torch.nn.functional.softmax(model_output, dim=1) | |
conf, classes = torch.max(probs, 1) | |
return conf.item(), classes.item() | |
def downsyndrome_gradio_inference(img_file): | |
classes = ['Down Syndrome', 'Healty'] | |
infer_transform = T.Compose([ | |
T.Resize((255, 255)), | |
T.ToTensor(), | |
]) | |
transform_image = infer_transform(img_file.convert('RGB')).float().unsqueeze(0) | |
model = pipeline(task='image-classification', model='gitfreder/down-syndrome-detection') | |
conf, cls = calc_result_confidence(model(transform_image)) | |
return { | |
'Predicted': classes[cls], | |
'Confidence Score': conf | |
} | |
iface = gr.Interface(fn=downsyndrome_gradio_inference, inputs=gr.Image(type='pil'), outputs=gr.JSON(), title="Down Syndrome Detection", description="A model interfaces that detect downsyndrom children from the photo") | |
iface.launch() |