File size: 2,167 Bytes
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_chroma import Chroma
import spaces
from langchain_text_splitters import MarkdownHeaderTextSplitter
import os
from transformers import AutoTokenizer
api_token = os.getenv("HF_TOKEN")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
    
embedding_model = HuggingFaceBgeEmbeddings(
        model_name="BAAI/bge-large-en-v1.5",
        model_kwargs={"device": "cuda"},
        encode_kwargs={"normalize_embeddings": True},
        query_instruction=""
    )


def create_rag_index(text_no_prefix):
    """Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
                tokenizer,
                chunk_size=256,
                chunk_overlap=0,
                add_start_index=True,
                strip_whitespace=True,
                separators=["\n\n", "\n", ".", " ", ""],
            )
    # Concatenate pages and create Document objects.
    docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
    
    vectorstore = Chroma.from_documents(documents=docs, embedding=embedding_model)
    return vectorstore

def run_naive_rag_query(vectorstore, query, rag_token_size, prefix, task, few_shot_examples):
    """
    For naive RAG, retrieves top-k chunks (k based on target token size)
    and generates an answer using those chunks.
    """
    k = max(1, rag_token_size // 256)
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
    retrieved_docs = retriever.invoke(query)
    for doc in retrieved_docs:
        print("=================")
        print(doc.page_content)
        print("=================")
    formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
    
    rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
    
    return rag_context