File size: 31,394 Bytes
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
b5ac9e4
 
 
 
 
 
 
 
 
 
fa8f9de
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
 
b5ac9e4
 
 
 
 
 
 
 
 
 
 
fa8f9de
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a243e9
b5ac9e4
1a243e9
b5ac9e4
fa8f9de
b5ac9e4
1a243e9
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
 
 
1a243e9
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
b5ac9e4
 
 
 
 
fa8f9de
 
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57b01a
 
 
 
 
 
 
b5ac9e4
fa8f9de
 
 
 
b5ac9e4
 
 
 
fa8f9de
 
 
b5ac9e4
b57b01a
b5ac9e4
fa8f9de
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b57b01a
 
 
 
 
 
b5ac9e4
fa8f9de
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
 
b5ac9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8f9de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
import copy
import math
import os
import time
from threading import Thread

import gradio as gr
import spaces
import torch
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption
from langchain.schema.document import Document
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_docling import DoclingLoader
from langchain_docling.loader import ExportType
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer
from transformers.models.llama.modeling_llama import rotate_half
import uuid

from utils import (
    calculate_tokens_suggest_compression_ratio,
    repeat_kv,
    update_retrieval_context,
)



# Initialize the model and tokenizer.
api_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.eval()
model.to(device)
embedding_model = HuggingFaceBgeEmbeddings(
        model_name="BAAI/bge-large-en-v1.5",
        model_kwargs={"device": str(device)},
        encode_kwargs={"normalize_embeddings": True},
        query_instruction=""
    )


# Create a chat template and split into prefix and suffix.
content_system = ""
content_user = "######"
user_template = [
    {"role": "system", "content": content_system},
    {"role": "user", "content": content_user}
]
user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False)
prefix, suffix = user.split(content_user)
sink_tokens = max(4, len(tokenizer.encode(prefix)))

# Default prompt content.
default_task_description = (
    "Answer the question based on the given passages. "
    "Only give me the answer and do not output any other words."
)
default_few_shot = """Examples
question: Which case was brought to court first Miller v. California or Gates v. Collier ?
answer: Miller v. California
question: The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author?
answer: Charles L. Clifford
question: Prior to playing for Michigan State, Keith Nichol played football for a school located in what city?
answer: Norman
"""

class FinchCache(DynamicCache):
    def __init__(self) -> None:
        super().__init__()
        self.key_cache = []
        self.value_cache = []

    @staticmethod
    def _rotate_half(x):
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

    def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
        return (key_states * cos) + (self._rotate_half(key_states) * sin)

    @staticmethod
    def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
        B, H, L = important_pos_batch.shape
        device = important_pos_batch.device
        device_type = x.device.type
        dtype = x.dtype
        idx = torch.arange(0, L, device=device)
        idx = idx.unsqueeze(0)
        inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
        idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
        delta_pos =  idx - important_pos_batch
        delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)

        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"

        with torch.autocast(device_type=device_type, enabled=False):
            freqs = delta_pos.float() * inv_freq.float()
            freqs = freqs.transpose(2, 3)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos().contiguous()
            sin = emb.sin().contiguous()
        return cos.to(dtype=dtype), sin.to(dtype=dtype)

    @staticmethod
    def gather_important_tokens(states, indices):
        return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()

    def compress_cache(self, layer_index, important_pos, inv_freq):
        new_length = important_pos.size(2)
        new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
        gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
        self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
        gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
        self.value_cache[layer_index] = gathered_values
        self._seen_tokens = new_length

    def save(self, path: str):
        """Save the cache to disk, moving tensors to CPU."""
        try:
            os.makedirs(os.path.dirname(path), exist_ok=True)
            torch.save(
                {"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
                path,
            )
        except Exception as e:
            print(f"Error occurred while saving: {e}")

    @classmethod
    def load(cls, path: str, device: str = "cpu") -> "FinchCache":
        """Load the cache from disk and move tensors to the specified device."""
        data = torch.load(path, map_location=device)
        cache = cls()
        cache.key_cache = [k.to(device) for k in data["key_cache"]]
        cache.value_cache = [v.to(device) for v in data["value_cache"]]
        cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
        return cache



def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
    file_path = file_objs if file_objs is not None else url
    pipeline_options = PdfPipelineOptions()
    pipeline_options.do_ocr = do_ocr
    pipeline_options.do_table_structure = do_table_structure
    pdf_format_options = PdfFormatOption(
        pipeline_options=pipeline_options,
        backend=PyPdfiumDocumentBackend,
    )
    doc_converter = DocumentConverter(
        allowed_formats=[InputFormat.PDF],
        format_options={
            InputFormat.PDF: pdf_format_options
        }
    )

    # Pass the custom converter to the DoclingLoader.
    loader = DoclingLoader(
        file_path=file_path,
        export_type=ExportType.MARKDOWN,
        converter=doc_converter
    )
    docs = loader.load()
    return docs[0].page_content


def create_rag_index(collection_name, text_no_prefix):
    """Loads the PDF, splits its text, and builds a vectorstore for naive RAG."""
    text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
                tokenizer,
                chunk_size=256,
                chunk_overlap=0,
                add_start_index=True,
                strip_whitespace=True,
                separators=["\n\n", "\n", ".", " ", ""],
            )
    # Concatenate pages and create Document objects.
    docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
    vectorstore = Chroma.from_documents(collection_name=collection_name, persist_directory="./chroma_db", documents=docs, embedding=embedding_model)
    return vectorstore


@spaces.GPU
def auto_convert(file_objs, url, do_ocr, do_table_structure):
    if file_objs is None and (url is None or url.strip() == ""):
        return (
            gr.update(value=""),
            "Number of tokens before compression: ",
            gr.update(), 
            "Number of tokens after compression: ",
            0,
            gr.update(interactive=False),  # Disable compress button when no input.
            False,
            {}  # return an empty state dictionary
        )
    # Convert the document to markdown.
    print("Converting to markdown")
    markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure)
    print("Done")
    combined_text = prefix + markdown
    print("Suggestioning Compression ratio")
    token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model)
    print("Done")
    min_ratio = min(suggestions)
    max_ratio = max(suggestions)
    default_ratio = suggestions[len(suggestions) // 2]
    retrieval_tokens = int(token_count / default_ratio)
    token_count_str = f"Number of tokens before compression: {token_count}"
    retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
    slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1)
    
    # Create the RAG index immediately.
    if combined_text.startswith(prefix):
        rag_text = combined_text[len(prefix):]
    else:
        rag_text = combined_text
    collection_name = "default_collection_" + uuid.uuid4().hex[:6]
    rag_index = create_rag_index(collection_name, rag_text)
    state = {"rag_index": collection_name}
    print("Done")
    
    return (
        combined_text, 
        token_count_str, 
        slider_update, 
        retrieval_str, 
        token_count, 
        gr.update(interactive=True),
        False,
        state
    )
    

def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
    device = model.device
    dtype = model.dtype
    sink_tokens = sink_tokens
    num_chunks = step_size
    context_ids = context_ids.to(device)
    context_attention_mask = context_attention_mask.to(device)
    question_ids = question_ids.to(device)
    question_attention_mask = question_attention_mask.to(device)
    question_len = question_ids.size(1)
    total_len = context_ids.size(1)
    max_context_tokens_allowed = model.config.max_position_embeddings - question_len
    if total_len > max_context_tokens_allowed:
        num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))

    if total_len <= sink_tokens or num_chunks == 1:
        # If the context is too short or only one chunk is desired, use the entire context.
        context_ids_list = [context_ids]
        context_attention_mask_list = [context_attention_mask]
    else:
        # Calculate how many tokens remain after the sink tokens.
        remainder_len = total_len - sink_tokens

        # Compute the base tokens per chunk and any leftover.
        base = remainder_len // num_chunks
        leftover = remainder_len % num_chunks

        # Build a list of chunk sizes.
        # First chunk gets the sink tokens plus base tokens.
        chunk_sizes = [sink_tokens + base]

        # Chunks 2 to num_chunks-1 get base tokens each.
        for _ in range(num_chunks - 2):
            chunk_sizes.append(base)

        # The last chunk gets the remaining tokens (base + leftover).
        if num_chunks > 1:
            chunk_sizes.append(base + leftover)

        # Now slice the context using the calculated sizes.
        context_ids_list = []
        context_attention_mask_list = []
        offset = 0
        for size in chunk_sizes:
            end = offset + size
            context_ids_list.append(context_ids[:, offset:end])
            context_attention_mask_list.append(context_attention_mask[:, offset:end])
            offset = end

    # (Optional) Continue with the rest of your processing…
    len_rest = max(total_len - sink_tokens, 1)
    compression_factor = len_rest // target_token_size
    if compression_factor < 1:
        compression_factor = 1

    tokenized_doc_chunks = []
    for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
        tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})

    print("Number of chunks: ", len(tokenized_doc_chunks))

    rotary_emb = model.model.rotary_emb.to(device)
    inv_freq = rotary_emb.inv_freq
    batch_size = question_ids.size(0)
    ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)

    cache = FinchCache()
    past_cache_len = 0
    past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
    num_chunks = len(tokenized_doc_chunks)

    # Prepare a shared dictionary for hook outputs.
    query_context_matrices = {}

    # Define a hook function that uses a per-chunk offset stored on self.
    def query_hook_fn(module, input, output):
        layer_idx = getattr(module, "layer_idx", None)
        if layer_idx is not None:
            query_states = output.detach()
            bsz, seq_len, hidden_dim = query_states.size()
            num_query_heads = module.num_query_heads
            head_dim = hidden_dim // num_query_heads
            query_states = (
                query_states.view(bsz, seq_len, num_query_heads, head_dim)
                .transpose(1, 2)
                .contiguous()
            )
            # Use self._current_chunk_offset to select only the new tokens.
            query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()

    # Pre-register hooks for all layers only once.
    hooks = []
    for i, layer in enumerate(model.model.layers):
        layer.self_attn.q_proj.layer_idx = i  # For tracking.
        layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
        hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
        hooks.append(hook)

    # Process each document chunk sequentially.
    for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
        current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
        # Save the offset in an attribute the hook can access.
        _current_chunk_offset = current_seq_length
        # Clear the dictionary from any previous chunk.
        query_context_matrices.clear()

        # These chunks are already on the device.
        chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
        chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
        segment_attention_mask = torch.cat(
            [past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
        ).contiguous()
        current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
        current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()

        past_seen_tokens = cache.get_seq_length() if cache is not None else 0
        cache_position = torch.arange(
            past_seen_tokens + chunk_input_ids.shape[1],
            past_seen_tokens + current_input_ids.shape[1],
            device=device
        )
        causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
            current_attention_mask,
            sequence_length=question_ids.size(1),
            target_length=current_attention_mask.size(-1),
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=current_input_ids.size(0),
        ).contiguous()

        with torch.no_grad():
            outputs = model.model(
                input_ids=current_input_ids,
                use_cache=True,
                past_key_values=cache,
            )
            cache = outputs.past_key_values

        len_question = question_ids.size(1)
        # Now, for each transformer layer, update the cache using the query/key attention.
        for layer_idx in range(len(model.model.layers)):
            key_matrix = cache.key_cache[layer_idx]
            query_matrix = query_context_matrices[layer_idx]
            layer_cache_pos = torch.arange(
                past_cache_len + current_seq_length,
                past_cache_len + current_seq_length + len_question,
                device=device
            )
            position_ids = layer_cache_pos.unsqueeze(0)
            cos, sin = rotary_emb(query_matrix, position_ids)
            cos = cos.unsqueeze(1)
            sin = sin.unsqueeze(1)
            query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
            num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
            key_matrix = repeat_kv(key_matrix, num_repeats)

            scaling = math.sqrt(model.config.head_dim)
            attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
            causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
            attention_matrix = attention_matrix + causal_mask_sliced
            attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
            # Normalization
            tol = 1e-8
            binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
            non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
            non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
            attention_matrix = attention_matrix / non_zero_counts
            if j != num_chunks - 1: 
                attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
            else:
                attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
            attention_matrix = torch.sum(attention_matrix, dim=-2)
            attention_matrix = attention_matrix.view(
                attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
            ).sum(dim=2)
            full_context_size = attention_matrix.size(-1)
            attention_matrix[..., :sink_tokens] = float("inf")
            if j == num_chunks - 1:
                attention_matrix[..., -len_question:] = float("inf")
            if j == 0:
                k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
                k = min(k + past_cache_len, full_context_size)
            elif j < num_chunks - 1:
                to_keep_new = int(current_seq_length // compression_factor)
                k = min(past_cache_len + to_keep_new, full_context_size)
            else:
                desired_final = sink_tokens + target_token_size + len_question# TODO remember to include the question tokens
                k = desired_final if full_context_size >= desired_final else full_context_size
            k = max(k, sink_tokens)
            selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
            selected_indices, _ = torch.sort(selected_indices, dim=-1)
            cache.compress_cache(layer_idx, selected_indices, inv_freq)

        past_cache_len = cache._seen_tokens
        past_attention_mask = torch.ones(1, past_cache_len, device=device)

    # Remove the hooks once after all chunks are processed.
    for hook in hooks:
        hook.remove()

    return cache


def run_naive_rag_query(collection_name, query, rag_token_size, prefix, task, few_shot_examples):
    """
    For naive RAG, retrieves top-k chunks (k based on target token size)
    and generates an answer using those chunks.
    """
    k = max(1, rag_token_size // 256)
    vectorstore = Chroma(persist_directory="./chroma_db", embedding=embedding_model, collection_name=collection_name)
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
    retrieved_docs = retriever.invoke(query)
    for doc in retrieved_docs:
        print("=================")
        print(doc.page_content)
        print("=================")
    formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
    
    rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
    
    return rag_context


@spaces.GPU
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state):
    """
    Prepares the compressed KV cache. Uses the precomputed rag_index from state.
    """
    percentage = int(global_local_value.replace('%', ''))
    question_text = task_description + "\n" + few_shot
    context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
    question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
    context_ids = context_encoding["input_ids"]
    context_attention_mask = context_encoding["attention_mask"]
    question_ids = question_encoding["input_ids"]
    question_attention_mask = question_encoding["attention_mask"]
    retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
    
    if percentage > 0:
        target_token_size = int(retrieval_context_length * (percentage / 100))
        print("Target token size for compression: ", target_token_size)
        step_size = 2
        start_time_prefill = time.perf_counter()
        past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
                                                                context_ids, context_attention_mask,
                                                                question_ids, question_attention_mask))
        compressed_length = past_key_values.get_seq_length()
        print("Context size after compression: ", compressed_length)
        print("Compression rate: ", context_ids.size(1) / compressed_length)
    else:
        start_time_prefill = 0
        target_token_size = 0
        past_key_values = FinchCache()
        compressed_length = past_key_values.get_seq_length()

    cache_name = "default_cache_" + uuid.uuid4().hex[:6]
    cache_name = "default_cache_" + uuid.uuid4().hex[:6] + ".pt"
    save_dir = "./cache_dir"
    os.makedirs(save_dir, exist_ok=True)
    save_path = os.path.join(save_dir, cache_name)
    past_key_values.save(save_path)
        
    # Use the precomputed rag_index from state.
    collection_name = state.get("rag_index", None)
    if collection_name is None:
        print("Collection name not found creating a new one.")
        if combined_text.startswith(prefix):
            rag_text = combined_text[len(prefix):]
        else:
            rag_text = combined_text
        collection_name = "default_collection_" + uuid.uuid4().hex[:6]
        rag_index = create_rag_index(collection_name, rag_text)

    state.update({
        "compressed_cache": save_path,
        "compressed_length": compressed_length,
        "rag_index": collection_name,
        "target_token_size": target_token_size,
        "global_local": percentage,
        "combined_text": combined_text,
        "task_description": task_description,
        "few_shot": few_shot,
        "retrieval_slider": retrieval_context_length,
        "prefill_time": time.perf_counter() - start_time_prefill
    })
    return state, True


@spaces.GPU
def chat_response_stream(message: str, history: list, state: dict):
    """
    Generates a chat response with streaming output.
    Returns a simple string (not a list of message dicts) for ChatInterface.
    """
    user_message = message
    save_path = state["compressed_cache"]
    past_key_values = FinchCache.load(save_path, device=model.device)
    try:
        os.remove(save_path)
    except Exception as e:
        print(f"Error removing cache file: {e}")
    compressed_length = past_key_values.get_seq_length()
    collection_name = state["rag_index"]
    retrieval_slider_value = state["retrieval_slider"]
    percentage = state["global_local"]
    
    rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100)))
    print("RAG retrieval size: ", rag_retrieval_size)
    
    if percentage == 0:
        rag_prefix = prefix
        rag_task = state["task_description"]
        rag_few_shot = state["few_shot"]
    else:
        rag_prefix = ""
        rag_task = ""
        rag_few_shot = ""
    print("user message: ", user_message)
    if rag_retrieval_size != 0:
        print("Running RAG query")
        rag_context = run_naive_rag_query(collection_name, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot)
        new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:"
    else:
        new_input = "\nquestion: " + user_message + suffix + "answer:"
    tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device)
    eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long)
    new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1)
    new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1)
    
    print("New input is: ", new_input)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=new_input_ids,
        attention_mask=new_attention_mask,
        past_key_values=past_key_values,
        streamer=streamer,
        use_cache=True,
        max_new_tokens=1024,
        num_beams=1,
        do_sample=False,
        temperature=1.0,
        top_p=1.0,
        top_k=None,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    
    full_output = ""
    for text in streamer:
        full_output += text
        time.sleep(0.05)
        yield full_output
        
    state["compressed_cache"] = past_key_values
    return full_output

##########################################################################
# Gradio Interface: note that we now use ChatInterface instead of a Chatbot.
##########################################################################
CSS = """
body {
    font-family: "Times New Roman", Times, serif;
}
.upload-section {
    padding: 10px;
    border: 2px dashed #ccc;
    border-radius: 10px;
}
.upload-button {
    background: #34c759 !important;
    color: white !important;
    border-radius: 25px !important;
}
.chatbot-container {
    margin-top: 20px;
}
.status-output {
    margin-top: 10px;
    font-size: 14px;
}
.processing-info {
    margin-top: 5px;
    font-size: 12px;
    color: #666;
}
.info-container {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
}
.file-list {
    margin-top: 0;
    max-height: 200px;
    overflow-y: auto;
    padding: 5px;
    border: 1px solid #eee;
    border-radius: 5px;
}
.stats-box {
    margin-top: 10px;
    padding: 10px;
    border-radius: 5px;
    font-size: 12px;
}
.submit-btn {
    background: #1a73e8 !important;
    color: white !important;
    border-radius: 25px !important;
    margin-left: 10px;
    padding: 5px 10px;
    font-size: 16px;
}
.input-row {
    display: flex;
    align-items: center;
}
@media (min-width: 768px) {
    .main-container {
        display: flex;
        justify-content: space-between;
        gap: 20px;
    }
    .upload-section {
        flex: 3;
    }
    .chatbot-container {
        flex: 1;
        margin-top: 0;
    }
}
"""

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
    gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
    
    hidden_token_count = gr.State(value=0)
    compression_done = gr.State(value=False)
    compressed_doc_state = gr.State(value={})
    
    with gr.Row(elem_classes="main-container"):
        with gr.Column(elem_classes="upload-section"):
            gr.Markdown("## Document Preprocessing")
            with gr.Row():
                file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area")
                url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf")
            with gr.Row():
                do_ocr = gr.Checkbox(label="Do OCR", value=False)
                do_table = gr.Checkbox(label="Include Table Structure", value=False)
            with gr.Accordion("Prompt Designer", open=False):
                task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description")
                few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot")
            with gr.Accordion("Show Markdown Output", open=False):
                markdown_output = gr.Textbox(label="Markdown Output", lines=20)
            token_count_text = gr.Markdown("Number of tokens before compression: ")
            retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
            retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
            global_local_slider = gr.Radio(label="Global vs Local (0 is all RAG, 100 is all global)", 
                                           choices=["0%", "25%", "50%", "75%", "100%"], value="75%")
            compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
            
            file_input.change(
                fn=auto_convert,
                inputs=[file_input, url_input, do_ocr, do_table],
                outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
            )
            url_input.change(
                fn=auto_convert,
                inputs=[file_input, url_input, do_ocr, do_table],
                outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
            )
            do_ocr.change(
                fn=auto_convert,
                inputs=[file_input, url_input, do_ocr, do_table],
                outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
            )
            do_table.change(
                fn=auto_convert,
                inputs=[file_input, url_input, do_ocr, do_table],
                outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state]
            )
            retrieval_slider.change(
                fn=update_retrieval_context,
                inputs=[hidden_token_count, retrieval_slider],
                outputs=retrieval_info_text
            )
            compress_button.click(
                fn=prepare_compression_and_rag,
                inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
                outputs=[compressed_doc_state, compression_done]
            )
        
        with gr.Column(elem_classes="chatbot-container"):
            gr.Markdown("## Chat")
            chat_interface = gr.ChatInterface(
                fn=chat_response_stream,
                additional_inputs=[compressed_doc_state],
                type="messages"
            )

demo.queue(max_size=16).launch()