File size: 4,935 Bytes
0b5f1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# from pathlib import Path
# from typing import List, Dict, Tuple
# import matplotlib.colors as mpl_colors

# import pandas as pd
# import seaborn as sns
# import shinyswatch

# from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui

# sns.set_theme()

# www_dir = Path(__file__).parent.resolve() / "www"

# df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
# numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
# species: List[str] = df["Species"].unique().tolist()
# species.sort()

# app_ui = ui.page_fillable(
#     shinyswatch.theme.minty(),
#     ui.layout_sidebar(
#         ui.sidebar(
#             # Artwork by @allison_horst
#             ui.input_selectize(
#                 "xvar",
#                 "X variable",
#                 numeric_cols,
#                 selected="Bill Length (mm)",
#             ),
#             ui.input_selectize(
#                 "yvar",
#                 "Y variable",
#                 numeric_cols,
#                 selected="Bill Depth (mm)",
#             ),
#             ui.input_checkbox_group(
#                 "species", "Filter by species", species, selected=species
#             ),
#             ui.hr(),
#             ui.input_switch("by_species", "Show species", value=True),
#             ui.input_switch("show_margins", "Show marginal plots", value=True),
#         ),
#         ui.output_ui("value_boxes"),
#         ui.output_plot("scatter", fill=True),
#         ui.help_text(
#             "Artwork by ",
#             ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
#             class_="text-end",
#         ),
#     ),
# )


# def server(input: Inputs, output: Outputs, session: Session):
#     @reactive.Calc
#     def filtered_df() -> pd.DataFrame:
#         """Returns a Pandas data frame that includes only the desired rows"""

#         # This calculation "req"uires that at least one species is selected
#         req(len(input.species()) > 0)

#         # Filter the rows so we only include the desired species
#         return df[df["Species"].isin(input.species())]

#     @output
#     @render.plot
#     def scatter():
#         """Generates a plot for Shiny to display to the user"""

#         # The plotting function to use depends on whether margins are desired
#         plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot

#         plotfunc(
#             data=filtered_df(),
#             x=input.xvar(),
#             y=input.yvar(),
#             palette=palette,
#             hue="Species" if input.by_species() else None,
#             hue_order=species,
#             legend=False,
#         )

#     @output
#     @render.ui
#     def value_boxes():
#         df = filtered_df()

#         def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
#             return ui.value_box(
#                 title,
#                 count,
#                 {"class_": "pt-1 pb-0"},
#                 showcase=ui.fill.as_fill_item(
#                     ui.tags.img(
#                         {"style": "object-fit:contain;"},
#                         src=showcase_img,
#                     )
#                 ),
#                 theme_color=None,
#                 style=f"background-color: {bgcol};",
#             )

#         if not input.by_species():
#             return penguin_value_box(
#                 "Penguins",
#                 len(df.index),
#                 bg_palette["default"],
#                 # Artwork by @allison_horst
#                 showcase_img="penguins.png",
#             )

#         value_boxes = [
#             penguin_value_box(
#                 name,
#                 len(df[df["Species"] == name]),
#                 bg_palette[name],
#                 # Artwork by @allison_horst
#                 showcase_img=f"{name}.png",
#             )
#             for name in species
#             # Only include boxes for _selected_ species
#             if name in input.species()
#         ]

#         return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))


# # "darkorange", "purple", "cyan4"
# colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
# colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]

# palette: Dict[str, Tuple[float, float, float]] = {
#     "Adelie": colors[0],
#     "Chinstrap": colors[1],
#     "Gentoo": colors[2],
#     "default": sns.color_palette()[0],  # type: ignore
# }

# bg_palette = {}
# # Use `sns.set_style("whitegrid")` to help find approx alpha value
# for name, col in palette.items():
#     # Adjusted n_colors until `axe` accessibility did not complain about color contrast
#     bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1])  # type: ignore


# app = App(
#     app_ui,
#     server,
#     static_assets=str(www_dir),
# )

from data import get_data
get_data()