Spaces:
Sleeping
Sleeping
File size: 8,261 Bytes
aa522e4 1970d42 aa522e4 1970d42 5c5032f 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 5c5032f 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 aa522e4 1970d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
!pip install langdetect faiss-cpu transformers gradio groq sentence-transformers pypdf2 python-pptx pandas docx2txt
import gradio as gr
import fitz # PyMuPDF
import numpy as np
import requests
import faiss
import re
import json
import pandas as pd
from docx import Document
from pptx import Presentation
from sentence_transformers import SentenceTransformer
from concurrent.futures import ThreadPoolExecutor
# Configuration
GROQ_API_KEY = "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" # Replace with your actual key
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # Proper embedding model
CHUNK_SIZE = 512
MAX_TOKENS = 4096
WORKERS = 8
# Initialize the embedding model
embedding_model = SentenceTransformer(EMBEDDING_MODEL)
class DocumentProcessor:
def __init__(self):
self.index = faiss.IndexFlatIP(embedding_model.get_sentence_embedding_dimension())
self.chunks = []
self.processor_pool = ThreadPoolExecutor(max_workers=WORKERS)
def extract_text_from_pptx(self, file_path):
try:
prs = Presentation(file_path)
return " ".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
except Exception as e:
print(f"PPTX Error: {str(e)}")
return ""
def extract_text_from_xls_csv(self, file_path):
try:
if file_path.endswith(('.xls', '.xlsx')):
df = pd.read_excel(file_path)
else:
df = pd.read_csv(file_path)
return " ".join(df.astype(str).values.flatten())
except Exception as e:
print(f"Spreadsheet Error: {str(e)}")
return ""
def extract_text_from_pdf(self, file_path):
try:
doc = fitz.open(file_path)
return " ".join(page.get_text("text", flags=fitz.TEXT_PRESERVE_WHITESPACE) for page in doc)
except Exception as e:
print(f"PDF Error: {str(e)}")
return ""
def process_file(self, file):
try:
file_path = file.name
print(f"Processing: {file_path}")
if file_path.endswith('.pdf'):
text = self.extract_text_from_pdf(file_path)
elif file_path.endswith('.docx'):
text = " ".join(p.text for p in Document(file_path).paragraphs)
elif file_path.endswith('.txt'):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
elif file_path.endswith('.pptx'):
text = self.extract_text_from_pptx(file_path)
elif file_path.endswith(('.xls', '.xlsx', '.csv')):
text = self.extract_text_from_xls_csv(file_path)
else:
return ""
clean_text = re.sub(r'\s+', ' ', text).strip()
print(f"Extracted {len(clean_text)} characters from {file_path}")
return clean_text
except Exception as e:
print(f"Processing Error: {str(e)}")
return ""
def semantic_chunking(self, text):
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < CHUNK_SIZE:
current_chunk += " " + sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks[:1000] # Limit to 1000 chunks per document
def process_documents(self, files):
self.chunks = []
if not files:
return "No files uploaded!"
print("\n" + "="*40 + " PROCESSING DOCUMENTS " + "="*40)
texts = list(self.processor_pool.map(self.process_file, files))
with ThreadPoolExecutor(max_workers=WORKERS) as executor:
chunk_lists = list(executor.map(self.semantic_chunking, texts))
all_chunks = [chunk for chunk_list in chunk_lists for chunk in chunk_list]
print(f"Total chunks generated: {len(all_chunks)}")
if not all_chunks:
return "Error: No chunks generated from documents"
try:
embeddings = embedding_model.encode(
all_chunks,
batch_size=32,
convert_to_tensor=True,
show_progress_bar=False
).cpu().numpy().astype('float32')
self.index.reset()
self.index.add(embeddings)
self.chunks = all_chunks
return f"Processed {len(all_chunks)} chunks from {len(files)} files"
except Exception as e:
print(f"Embedding Error: {str(e)}")
return f"Error: {str(e)}"
def query(self, question):
if not self.chunks:
return "Please process documents first", False
try:
print("\n" + "="*40 + " QUERY PROCESSING " + "="*40)
print(f"Question: {question}")
question_embedding = embedding_model.encode([question], convert_to_tensor=True).cpu().numpy().astype('float32')
_, indices = self.index.search(question_embedding, 3)
print(f"Top indices: {indices}")
context = "\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
print(f"Context length: {len(context)} characters")
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"messages": [{
"role": "user",
"content": f"Answer concisely based on the context: {question}\nContext: {context}"
}],
"model": "mixtral-8x7b-32768",
"temperature": 0.3,
"max_tokens": MAX_TOKENS,
"stream": False # Changed to False for simpler handling
}
response = requests.post(
"https://api.groq.com/openai/v1/chat/completions",
headers=headers,
json=payload,
timeout=20
)
print(f"API Status Code: {response.status_code}")
if response.status_code != 200:
return f"API Error: {response.text}", False
data = response.json()
final_answer = data.get("choices", [{}])[0].get("message", {}).get("content", "")
print(f"Final Answer: {final_answer}")
return final_answer, True
except Exception as e:
print(f"Query Error: {str(e)}")
return f"Error: {str(e)}", False
processor = DocumentProcessor()
def ask_question(question, chat_history):
if not question.strip():
return chat_history + [("", "Please enter a valid question")]
answer, success = processor.query(question)
return chat_history + [(question, answer)]
with gr.Blocks(title="Document ChatBot") as app:
gr.Markdown("## π Multi-Format Document ChatBot")
with gr.Row():
files = gr.File(
file_count="multiple",
file_types=[".pdf", ".docx", ".txt", ".pptx", ".xls", ".xlsx", ".csv"],
label="Upload Documents"
)
process_btn = gr.Button("Process Documents", variant="primary")
status = gr.Textbox(label="Processing Status", interactive=False)
chatbot = gr.Chatbot(height=500, label="Chat History")
with gr.Row():
question = gr.Textbox(
label="Your Query",
placeholder="Enter your question about the documents...",
max_lines=3
)
ask_btn = gr.Button("Ask", variant="primary")
clear_btn = gr.Button("Clear Chat")
process_btn.click(
fn=processor.process_documents,
inputs=files,
outputs=status
)
ask_btn.click(
fn=ask_question,
inputs=[question, chatbot],
outputs=chatbot
).then(lambda: "", None, question)
clear_btn.click(
fn=lambda: [],
inputs=None,
outputs=chatbot
)
app.launch() |