ChatBot / app.py
gmustafa413's picture
Create app.py
1970d42 verified
raw
history blame
8.01 kB
import gradio as gr
import fitz
import numpy as np
import requests
import faiss
import re
import json
import pandas as pd
from docx import Document
from pptx import Presentation
from sentence_transformers import SentenceTransformer
from concurrent.futures import ThreadPoolExecutor
# Configuration
GROQ_API_KEY = "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" # πŸ”‘ REPLACE WITH YOUR ACTUAL KEY
MODEL_NAME = "all-MiniLM-L6-v2"
CHUNK_SIZE = 512
MAX_TOKENS = 4096
MODEL = SentenceTransformer(MODEL_NAME)
WORKERS = 8
class DocumentProcessor:
def __init__(self):
self.index = faiss.IndexFlatIP(MODEL.get_sentence_embedding_dimension())
self.chunks = []
self.processor_pool = ThreadPoolExecutor(max_workers=WORKERS)
def extract_text_from_pptx(self, file_path):
try:
prs = Presentation(file_path)
return " ".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
except Exception as e:
print(f"PPTX Error: {str(e)}")
return ""
def extract_text_from_xls_csv(self, file_path):
try:
if file_path.endswith(('.xls', '.xlsx')):
df = pd.read_excel(file_path)
else:
df = pd.read_csv(file_path)
return " ".join(df.astype(str).values.flatten())
except Exception as e:
print(f"Spreadsheet Error: {str(e)}")
return ""
def extract_text_from_pdf(self, file_path):
try:
doc = fitz.open(file_path)
return " ".join(page.get_text("text", flags=fitz.TEXT_PRESERVE_WHITESPACE) for page in doc)
except Exception as e:
print(f"PDF Error: {str(e)}")
return ""
def process_file(self, file):
try:
file_path = file.name
print(f"Processing: {file_path}")
if file_path.endswith('.pdf'):
text = self.extract_text_from_pdf(file_path)
elif file_path.endswith('.docx'):
text = " ".join(p.text for p in Document(file_path).paragraphs)
elif file_path.endswith('.txt'):
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
elif file_path.endswith('.pptx'):
text = self.extract_text_from_pptx(file_path)
elif file_path.endswith(('.xls', '.xlsx', '.csv')):
text = self.extract_text_from_xls_csv(file_path)
else:
return ""
clean_text = re.sub(r'\s+', ' ', text).strip()
print(f"Extracted {len(clean_text)} characters from {file_path}")
return clean_text
except Exception as e:
print(f"Processing Error: {str(e)}")
return ""
def semantic_chunking(self, text):
words = re.findall(r'\S+\s*', text)
chunks = [''.join(words[i:i+CHUNK_SIZE//2]) for i in range(0, len(words), CHUNK_SIZE//2)]
return chunks[:1000]
def process_documents(self, files):
self.chunks = []
if not files:
return "No files uploaded!"
print("\n" + "="*40 + " PROCESSING DOCUMENTS " + "="*40)
texts = list(self.processor_pool.map(self.process_file, files))
with ThreadPoolExecutor(max_workers=WORKERS) as executor:
chunk_lists = list(executor.map(self.semantic_chunking, texts))
all_chunks = [chunk for chunk_list in chunk_lists for chunk in chunk_list]
print(f"Total chunks generated: {len(all_chunks)}")
if not all_chunks:
return "Error: No chunks generated from documents"
try:
embeddings = MODEL.encode(
all_chunks,
batch_size=512,
convert_to_tensor=True,
show_progress_bar=False
).cpu().numpy().astype('float32')
self.index.reset()
self.index.add(embeddings)
self.chunks = all_chunks
return f"Processed {len(all_chunks)} chunks from {len(files)} files"
except Exception as e:
print(f"Embedding Error: {str(e)}")
return f"Error: {str(e)}"
def query(self, question):
if not self.chunks:
return "Please process documents first", False
try:
print("\n" + "="*40 + " QUERY PROCESSING " + "="*40)
print(f"Question: {question}")
question_embedding = MODEL.encode([question], convert_to_tensor=True).cpu().numpy().astype('float32')
_, indices = self.index.search(question_embedding, 3)
print(f"Top indices: {indices}")
context = "\n".join([self.chunks[i] for i in indices[0] if i < len(self.chunks)])
print(f"Context length: {len(context)} characters")
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"messages": [{
"role": "user",
"content": f"Answer concisely: {question}\nContext: {context}"
}],
"model": "mixtral-8x7b-32768",
"temperature": 0.3,
"max_tokens": MAX_TOKENS,
"stream": True
}
response = requests.post(
"https://api.groq.com/openai/v1/chat/completions",
headers=headers,
json=payload,
timeout=20
)
print(f"API Status Code: {response.status_code}")
if response.status_code != 200:
return f"API Error: {response.text}", False
full_answer = []
for chunk in response.iter_lines():
if chunk:
try:
decoded = chunk.decode('utf-8').strip()
if decoded.startswith('data:'):
data = json.loads(decoded[5:])
if content := data.get('choices', [{}])[0].get('delta', {}).get('content', ''):
full_answer.append(content)
except Exception as e:
print(f"Chunk Error: {str(e)}")
continue
final_answer = ''.join(full_answer)
print(f"Final Answer: {final_answer}")
return final_answer, True
except Exception as e:
print(f"Query Error: {str(e)}")
return f"Error: {str(e)}", False
processor = DocumentProcessor()
def ask_question(question, chat_history):
if not question.strip():
return chat_history + [("", "Please enter a valid question")]
answer, success = processor.query(question)
return chat_history + [(question, answer)]
with gr.Blocks(title="System") as app:
gr.Markdown("## πŸš€ Multi-Format-Reader ChatBot")
with gr.Row():
files = gr.File(file_count="multiple",
file_types=[".pdf", ".docx", ".txt", ".pptx", ".xls", ".xlsx", ".csv"],
label="Upload Documents")
process_btn = gr.Button("Process", variant="primary")
status = gr.Textbox(label="Processing Status", interactive=False)
chatbot = gr.Chatbot(height=500, label="Chat History")
with gr.Row():
question = gr.Textbox(label="Your Query",
placeholder="Enter your question...",
max_lines=3)
ask_btn = gr.Button("Ask", variant="primary")
clear_btn = gr.Button("Clear Chat")
process_btn.click(
fn=processor.process_documents,
inputs=files,
outputs=status
)
ask_btn.click(
fn=ask_question,
inputs=[question, chatbot],
outputs=chatbot
).then(lambda: "", None, question)
clear_btn.click(
fn=lambda: [],
inputs=None,
outputs=chatbot
)
app.launch()