habib926653's picture
updating prompt
00a24f4 verified
raw
history blame
9.76 kB
import requests
import constants
import os
from PIL import Image
from gradio_client import Client
import moviepy.editor as mp
from moviepy.video.VideoClip import ImageClip
from moviepy.editor import AudioFileClip
from structured_output_extractor import StructuredOutputExtractor
from pydantic import BaseModel, Field
from typing import List
import tempfile
import os
def get_summarization(text: str):
print('\n\nSummarizing text: ', text, type(text))
# Input payload
data = {"text_input": text}
# Headers for authentication
headers = {"Authorization": f"Bearer {constants.HF_TOKEN}"}
try:
# Make a GET request
response = requests.post(constants.SUMMARIZATION_ENDPOINT, json=data, headers=headers)
# Process response
if response.status_code == 200:
response_data = response.json()
print("Returning Summarization")
return response_data.get("output", "No output found.")
else:
print("Some Error Occured During Summarization Request")
print(response)
print(f"Error: {response.status_code}, {response.text}")
return {"error_occured" : response.text}
except Exception as e:
print(f"An exception occurred: {e}")
return {"error_occured" : e}
def segments_to_chunks(segments):
chunks = []
for segment in segments:
chunks.append(segment.get("text"))
return chunks
def get_image_prompts(text_input : List, summary):
print(f"summary: {summary}")
# Example Pydantic model (e.g., Movie)
class ImagePromptResponseSchema(BaseModel):
image_prompts: List[str] = Field(
description="List of detailed image prompts, Each Image Prompt Per Chunk"
)
extractor = StructuredOutputExtractor(response_schema=ImagePromptResponseSchema)
chunks_count = len(text_input)
chunks = "chunk: " + "\nchunk: ".join(text_input)
prompt = f"""
ROLE: You are a Highly Experienced Image Prompt Synthesizer
SYSTEM PROMPT: Given the Overall Summary and All Chunks of the Text:
1. Read the summary and the combined context of all chunks (the entire script).
2. **Identify the central theme and setting** of the complete text.
3. For each chunk, examine both the chunk and its summary, then create a **focused, context-aware image prompt** based on key visual elements.
4. **Ensure thematic consistency across all chunks:**
- The environment, mood, and lighting must remain true to the established theme (e.g., a dark, eerie jungle remains consistently dark and mysterious throughout).
5. **Keep the image style as 3D (this MUST be followed).**
6. **Negatives:** Do not include hyper-realistic elements or real-life human depictions, and avoid any out-of-context settings (e.g., a park in a jungle story).
7. **Use mood-specific lighting and color palettes:**
- For example, if the theme is a dark jungle, use deep greens, blacks, misty blues, and dim moonlight.
- Ensure that all visual elements (fog, shadows, expressions) support the horror/suspense atmosphere.
8. NEVER generate prompts that could lead to NSFW images or any explicit content. Use safe and appropriate descriptions.
### Example:
**Summary:**
This text is a story of a man who ventured into a dark jungle and encountered a mysterious lion.
**Chunks:**
1. A man enters the dark jungle, mist swirling around him.
2. He comes face-to-face with a majestic yet eerie lion.
**Combined Context:**
"A man ventures into a dense, eerie jungle and unexpectedly meets a mysterious lion."
**Generated Prompts:**
- **Chunk 1:**
"[style: 3D | theme: dark jungle] A lone man steps into a dense, eerie jungle at twilight. Thick mist swirls around his feet as towering, twisted trees loom overhead. Dim, bluish moonlight filters through the foliage, casting long, haunting shadows."
- **Chunk 2:**
"[style: 3D | theme: dark jungle] In a clearing within the jungle, a majestic lion appears with an unsettling aura. Its eyes glow faintly in the dim light, and the surrounding trees seem to lean in, enhancing the mysterious tension."
TASK: Here is the summary: {summary}\n\n and \n\n Total of {chunks_count} chunks, generate an Image Prompt for each chunk\n\n {chunks}
"""
result = extractor.extract(prompt)
return result.model_dump() # returns dictionary version pydantic model
def generate_image(prompt, path='test_image.png'):
try:
# Initialize the Gradio Client with Hugging Face token
client = Client(constants.IMAGE_GENERATION_SPACE_NAME, hf_token=constants.HF_TOKEN)
# Make the API request
result = client.predict(
param_0=prompt, # Text prompt for image generation
api_name="/predict"
)
image = Image.open(result)
image.save(path)
# Return the result (which includes the URL or file path)
return result
except Exception as e:
print(f"Error during image generation: {e}")
return {"error": str(e)}
def generate_images(image_prompts, folder_name='test_folder'):
folder_path = tmp_folder(folder_name)
for index, prompt in enumerate(image_prompts):
print(index, prompt)
image_path = generate_image(prompt=prompt, path=f"{folder_path}/{index}.png")
yield prompt, image_path
def tmp_folder(folder_name: str) -> str:
# Use the current working directory or any other accessible path for temp folders
base_tmp_path = os.path.join(os.getcwd(), "tmp_dir") # Change this to any path you prefer
# Ensure that the base temp folder exists
if not os.path.exists(base_tmp_path):
os.makedirs(base_tmp_path)
print(f"Base temporary folder '{base_tmp_path}' created.")
# Define the path for the specific temporary folder
folder_path = os.path.join(base_tmp_path, folder_name)
# Create the specific temporary folder if it doesn't exist
os.makedirs(folder_path, exist_ok=True)
print(f"Temporary folder '{folder_name}' is ready at {folder_path}.")
return folder_path
from moviepy.editor import *
import os
import tempfile
from moviepy.editor import AudioFileClip, ImageClip, concatenate_videoclips
def generate_video(audio_file, images, segments):
try:
# Save the uploaded audio file to a temporary location
file_extension = os.path.splitext(audio_file.name)[1]
temp_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=f"{file_extension}")
temp_audio_path.write(audio_file.read())
temp_audio_path.close()
# Load the audio file using MoviePy
audio = AudioFileClip(temp_audio_path.name)
# Define YouTube-like dimensions (16:9 aspect ratio)
frame_width = 1280
frame_height = 720
video_clips = []
total_segments = len(segments)
for i, current_segment in enumerate(segments):
start_time = current_segment["start"]
end_time = current_segment["end"]
# Calculate the actual duration including any gap until the next segment
if i < total_segments - 1:
# If there's a next segment, extend until it starts
next_segment = segments[i + 1]
actual_end_time = next_segment["start"]
else:
# For the last segment, use its end time
actual_end_time = end_time
# Calculate total duration including any gap
segment_duration = actual_end_time - start_time
print(f"\nProcessing segment {i + 1}/{total_segments}:")
print(f" Start time: {start_time}s")
print(f" Base end time: {end_time}s")
print(f" Actual end time: {actual_end_time}s")
print(f" Total duration: {segment_duration}s")
print(f" Text: '{current_segment['text']}'")
# Ensure the image index is within bounds
image_path = images[min(i, len(images) - 1)]
# Create an ImageClip for the current segment
image_clip = ImageClip(image_path)
# Resize and pad the image to fit a 16:9 aspect ratio
image_clip = image_clip.resize(height=frame_height).on_color(
size=(frame_width, frame_height),
color=(0, 0, 0), # Black background
pos="center" # Center the image
)
# Set the duration and start time for the clip
image_clip = image_clip.set_duration(segment_duration)
image_clip = image_clip.set_start(start_time) # Set the start time explicitly
video_clips.append(image_clip)
# Concatenate all the image clips to form the video
print("Concatenating video clips...")
video = concatenate_videoclips(video_clips, method="compose")
# Add the audio to the video
video = video.set_audio(audio)
# Save the video to a temporary file
temp_dir = tempfile.gettempdir()
video_path = os.path.join(temp_dir, "generated_video.mp4")
print(f"Writing video file to {video_path}...")
video.write_videofile(video_path, fps=30, codec="libx264", audio_codec="aac")
# Clean up the temporary audio file
os.remove(temp_audio_path.name)
print("Temporary audio file removed.")
return video_path
except Exception as e:
print(f"Error generating video: {e}")
return None
# Example usage:
if __name__ == "__main__":
result = generate_images(["a guy in jungle", "a waterfall","greenery"])