goavinash5's picture
Upload folder using huggingface_hub
e97665c
# llama2-wrapper
- Use [llama2-wrapper](https://pypi.org/project/llama2-wrapper/) as your local llama2 backend for Generative Agents/Apps, [colab example](https://github.com/liltom-eth/llama2-webui/blob/main/colab/Llama_2_7b_Chat_GPTQ.ipynb).
- [Run OpenAI Compatible API](https://github.com/liltom-eth/llama2-webui#start-openai-compatible-api) on Llama2 models.
## Features
- Supporting models: [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)/[13b](https://huggingface.co/llamaste/Llama-2-13b-chat-hf)/[70b](https://huggingface.co/llamaste/Llama-2-70b-chat-hf), [Llama-2-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ), [Llama-2-GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML), [CodeLlama](https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GPTQ)...
- Supporting model backends: [tranformers](https://github.com/huggingface/transformers), [bitsandbytes(8-bit inference)](https://github.com/TimDettmers/bitsandbytes), [AutoGPTQ(4-bit inference)](https://github.com/PanQiWei/AutoGPTQ), [llama.cpp](https://github.com/ggerganov/llama.cpp)
- Demos: [Run Llama2 on MacBook Air](https://twitter.com/liltom_eth/status/1682791729207070720?s=20); [Run Llama2 on Colab T4 GPU](https://github.com/liltom-eth/llama2-webui/blob/main/colab/Llama_2_7b_Chat_GPTQ.ipynb)
- Use [llama2-wrapper](https://pypi.org/project/llama2-wrapper/) as your local llama2 backend for Generative Agents/Apps; [colab example](./colab/Llama_2_7b_Chat_GPTQ.ipynb).
- [Run OpenAI Compatible API](https://github.com/liltom-eth/llama2-webui#start-openai-compatible-api) on Llama2 models.
- [News](https://github.com/liltom-eth/llama2-webui/blob/main/docs/news.md), [Benchmark](https://github.com/liltom-eth/llama2-webui/blob/main/docs/performance.md), [Issue Solutions](https://github.com/liltom-eth/llama2-webui/blob/main/docs/issues.md)
[llama2-wrapper](https://pypi.org/project/llama2-wrapper/) is the backend and part of [llama2-webui](https://github.com/liltom-eth/llama2-webui), which can run any Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac).
## Install
```bash
pip install llama2-wrapper
```
## Start OpenAI Compatible API
```
python -m llama2_wrapper.server
```
it will use `llama.cpp` as the backend by default to run `llama-2-7b-chat.ggmlv3.q4_0.bin` model.
Start Fast API for `gptq` backend:
```
python -m llama2_wrapper.server --backend_type gptq
```
Navigate to http://localhost:8000/docs to see the OpenAPI documentation.
## API Usage
### `__call__`
`__call__()` is the function to generate text from a prompt.
For example, run ggml llama2 model on CPU, [colab example](https://github.com/liltom-eth/llama2-webui/blob/main/colab/ggmlv3_q4_0.ipynb):
```python
from llama2_wrapper import LLAMA2_WRAPPER, get_prompt
llama2_wrapper = LLAMA2_WRAPPER()
# Default running on backend llama.cpp.
# Automatically downloading model to: ./models/llama-2-7b-chat.ggmlv3.q4_0.bin
prompt = "Do you know Pytorch"
# llama2_wrapper() will run __call__()
answer = llama2_wrapper(get_prompt(prompt), temperature=0.9)
```
Run gptq llama2 model on Nvidia GPU, [colab example](https://github.com/liltom-eth/llama2-webui/blob/main/colab/Llama_2_7b_Chat_GPTQ.ipynb):
```python
from llama2_wrapper import LLAMA2_WRAPPER
llama2_wrapper = LLAMA2_WRAPPER(backend_type="gptq")
# Automatically downloading model to: ./models/Llama-2-7b-Chat-GPTQ
```
Run llama2 7b with bitsandbytes 8 bit with a `model_path`:
```python
from llama2_wrapper import LLAMA2_WRAPPER
llama2_wrapper = LLAMA2_WRAPPER(
model_path = "./models/Llama-2-7b-chat-hf",
backend_type = "transformers",
load_in_8bit = True
)
```
### completion
`completion()` is the function to generate text from a prompt for OpenAI compatible API `/v1/completions`.
```python
llama2_wrapper = LLAMA2_WRAPPER()
prompt = get_prompt("Hi do you know Pytorch?")
print(llm.completion(prompt))
```
### chat_completion
`chat_completion()` is the function to generate text from a dialog (chat history) for OpenAI compatible API `/v1/chat/completions`.
```python
llama2_wrapper = LLAMA2_WRAPPER()
dialog = [
{
"role":"system",
"content":"You are a helpful, respectful and honest assistant. "
},{
"role":"user",
"content":"Hi do you know Pytorch?",
},
]
print(llm.chat_completion(dialog))
```
### generate
`generate()` is the function to create a generator of response from a prompt.
This is useful when you want to stream the output like typing in the chatbot.
```python
llama2_wrapper = LLAMA2_WRAPPER()
prompt = get_prompt("Hi do you know Pytorch?")
for response in llama2_wrapper.generate(prompt):
print(response)
```
The response will be like:
```
Yes,
Yes, I'm
Yes, I'm familiar
Yes, I'm familiar with
Yes, I'm familiar with PyTorch!
...
```
### run
`run()` is similar to `generate()`, but `run()`can also accept `chat_history`and `system_prompt` from the users.
It will process the input message to llama2 prompt template with `chat_history` and `system_prompt` for a chatbot-like app.
### get_prompt
`get_prompt()` will process the input message to llama2 prompt with `chat_history` and `system_prompt`for chatbot.
By default, `chat_history` and `system_prompt` are empty and `get_prompt()` will add llama2 prompt template to your message:
```python
prompt = get_prompt("Hi do you know Pytorch?")
```
prompt will be:
```
[INST] <<SYS>>
<</SYS>>
Hi do you know Pytorch? [/INST]
```
If use `get_prompt("Hi do you know Pytorch?", system_prompt="You are a helpful...")`:
```
[INST] <<SYS>>
You are a helpful, respectful and honest assistant.
<</SYS>>
Hi do you know Pytorch? [/INST]
```
### get_prompt_for_dialog
`get_prompt_for_dialog()` will process dialog (chat history) to llama2 prompt for OpenAI compatible API `/v1/chat/completions`.
```python
dialog = [
{
"role":"system",
"content":"You are a helpful, respectful and honest assistant. "
},{
"role":"user",
"content":"Hi do you know Pytorch?",
},
]
prompt = get_prompt_for_dialog("Hi do you know Pytorch?")
# [INST] <<SYS>>
# You are a helpful, respectful and honest assistant.
# <</SYS>>
#
# Hi do you know Pytorch? [/INST]
```