Spaces:
Runtime error
Runtime error
File size: 9,484 Bytes
a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 21085cc a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 929c20c 3bcb760 929c20c a90cc5e 3bcb760 903793a 3bcb760 903793a 3bcb760 929c20c 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 e9c5763 3bcb760 e9c5763 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 a90cc5e 3bcb760 9c52723 510b9e9 9c52723 d11da87 c3faeca 9c52723 d11da87 d8de5c1 6424be8 d11da87 9c52723 d11da87 17778d7 d11da87 3bcb760 d11da87 6424be8 c3faeca 6424be8 c3faeca d11da87 3bcb760 d11da87 3bcb760 a90cc5e 510b9e9 e2763db 510b9e9 e2763db 510b9e9 e2763db c3faeca e2763db c3faeca e2763db a90cc5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import cv2
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splin
from numba import jit
import gradio as gr
@jit(nopython=True)
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(16 * nnz, dtype=np.float64)
A_rows = np.zeros(16 * nnz, dtype=np.int32)
A_cols = np.zeros(16 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
offsets = np.array([(0, 1), (0, -1), (1, 0), (-1, 0)])
idx = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for i in range(4):
dy, dx = offsets[i]
n_y, n_x = y + dy, x + dx
e = 4 * n + i
if 0 <= n_y < img_s_h and 0 <= n_x < img_s_w:
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = img_s[y, x] - img_s[n_y, n_x]
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
return A_data[:idx], A_rows[:idx], A_cols[:idx], b
def poisson_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(4*nnz, nnz))
v = splin.lsqr(A, b)[0]
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
@jit(nopython=True)
def neighbours(i: int, j: int, max_i: int, max_j: int):
pairs = []
for n in (-1, 1):
if 0 <= i+n <= max_i:
pairs.append((i+n, j))
if 0 <= j+n <= max_j:
pairs.append((i, j+n))
return pairs
@jit(nopython=True)
def build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(8 * nnz, dtype=np.float64)
A_rows = np.zeros(8 * nnz, dtype=np.int32)
A_cols = np.zeros(8 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
idx = 0
e = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1):
ds = img_s[y, x] - img_s[n_y, n_x]
dt = img_t[y, x] - img_t[n_y, n_x]
d = ds if abs(ds) > abs(dt) else dt
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = d
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
e += 1
return A_data[:idx], A_rows[:idx], A_cols[:idx], b[:e]
def mixed_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(len(b), nnz))
v = splin.spsolve(A.T @ A, A.T @ b)
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
def _2d_gaussian(sigma: float) -> np.ndarray:
ksize = np.int64(np.ceil(sigma)*6+1)
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
return gaussian_1d * np.transpose(gaussian_1d)
def _low_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
def _high_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return img - _low_pass_filter(img, sigma)
def _gaus_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
_im = _low_pass_filter(_im.copy(), sigma)
pyramid.append(_im)
_im = cv2.pyrDown(_im)
return pyramid
def _lap_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
lap = _high_pass_filter(_im.copy(), sigma)
pyramid.append(lap)
_im = cv2.pyrDown(_im)
return pyramid
def _blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray) -> np.ndarray:
return img1 * mask + img2 * (1.0 - mask)
def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth: int, sigma: int) -> np.ndarray:
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)
blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1]
h, w = blended[0].shape[:2]
img1 = cv2.resize(img1, (w, h))
img2 = cv2.resize(img2, (w, h))
mask = cv2.resize(mask, (w, h))
blanded_img = _blend(img1, img2, mask)
blanded_img = cv2.resize(blanded_img, blended[0].shape[:2])
imgs = []
for d in range(0, depth-1):
gaussian_img = _low_pass_filter(blanded_img.copy(), sigma)
reconstructed_img = cv2.add(blended[d], gaussian_img)
imgs.append(reconstructed_img)
blanded_img = cv2.pyrUp(reconstructed_img)
return np.clip(imgs[-1], 0, 1)
def get_image(img_input, mask=False, scale=True):
if isinstance(img_input, dict):
img = img_input.get('composite') or img_input.get('background')
elif isinstance(img_input, np.ndarray):
img = img_input
elif isinstance(img_input, str):
img = cv2.imread(img_input)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
raise ValueError(f"Unsupported image input type: {type(img_input)}")
if img is None:
raise ValueError("Failed to load image")
if mask:
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return np.where(img > 127, 1, 0).astype(np.uint8) # Threshold at 127 for the mask
if scale and img.dtype != np.float64:
return img.astype('float64') / 255.0
return img
def blend_images(bg_img, obj_img, mask_img, method):
bg_img = get_image(bg_img)
obj_img = get_image(obj_img)
# Handle different input types for mask_img
if isinstance(mask_img, dict):
mask_img = mask_img.get('composite') or mask_img.get('background')
elif isinstance(mask_img, str):
mask_img = cv2.imread(mask_img, cv2.IMREAD_GRAYSCALE)
mask_img = get_image(mask_img, mask=True)
if method == "Poisson":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = poisson_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Mixed Gradient":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = mixed_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Laplacian":
mask_stack = np.stack((mask_img.astype(float),) * 3, axis=-1)
blend_img = laplacian_blend(obj_img, bg_img, mask_stack, 5, 25.0)
return (blend_img * 255).astype(np.uint8)
def predict(im):
return im["composite"]
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
with gr.Row():
bg_img = gr.Image(label="Background Image", type="numpy")
obj_img = gr.Image(label="Object Image", type="numpy")
with gr.Row():
mask_img = gr.ImageEditor(
label="Mask Image",
type="numpy",
crop_size="1:1",
)
mask_preview = gr.Image(label="Mask Preview")
method = gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method", value="Poisson")
blend_button = gr.Button("Blend Images")
output_image = gr.Image(label="Blended Image")
mask_img.change(predict, outputs=mask_preview, inputs=mask_img, show_progress="hidden")
blend_button.click(
blend_images,
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image
)
def create_image_editor_input(image_path):
return {
"background": image_path,
"layers": [],
"composite": image_path
}
gr.Examples(
examples=[
["img1.jpg", "img2.jpg", create_image_editor_input("mask1.jpg"), "Poisson"],
["img3.jpg", "img4.jpg", create_image_editor_input("mask2.jpg"), "Mixed Gradient"],
["img6.jpg", "img9.jpg", create_image_editor_input("mask3.jpg"), "Laplacian"]
],
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image,
fn=blend_images,
cache_examples=True,
)
iface.launch() |