File size: 9,484 Bytes
a90cc5e
 
3bcb760
 
 
a90cc5e
 
3bcb760
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c5763
3bcb760
e9c5763
 
3bcb760
e9c5763
3bcb760
e9c5763
3bcb760
 
21085cc
a90cc5e
3bcb760
a90cc5e
 
 
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929c20c
3bcb760
929c20c
a90cc5e
3bcb760
903793a
3bcb760
903793a
3bcb760
929c20c
3bcb760
a90cc5e
 
3bcb760
a90cc5e
 
 
3bcb760
 
 
 
e9c5763
3bcb760
 
e9c5763
3bcb760
 
a90cc5e
3bcb760
 
a90cc5e
3bcb760
 
 
 
 
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
a90cc5e
3bcb760
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c52723
510b9e9
 
9c52723
 
 
 
 
d11da87
c3faeca
 
 
 
9c52723
d11da87
 
d8de5c1
6424be8
d11da87
9c52723
 
d11da87
17778d7
d11da87
3bcb760
d11da87
 
6424be8
c3faeca
 
 
 
6424be8
c3faeca
d11da87
3bcb760
 
 
 
 
 
 
 
 
 
d11da87
3bcb760
a90cc5e
 
 
510b9e9
 
 
e2763db
 
 
 
510b9e9
 
 
 
 
 
 
 
 
 
 
 
e2763db
 
 
 
 
510b9e9
 
e2763db
 
 
 
 
 
c3faeca
 
 
 
 
 
 
e2763db
c3faeca
 
 
 
 
e2763db
 
 
 
 
a90cc5e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import cv2
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splin
from numba import jit
import gradio as gr

@jit(nopython=True)
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
    nnz = len(ys)
    img_s_h, img_s_w = img_s.shape
    A_data = np.zeros(16 * nnz, dtype=np.float64)
    A_rows = np.zeros(16 * nnz, dtype=np.int32)
    A_cols = np.zeros(16 * nnz, dtype=np.int32)
    b = np.zeros(4 * nnz, dtype=np.float64)
    
    offsets = np.array([(0, 1), (0, -1), (1, 0), (-1, 0)])
    
    idx = 0
    for n in range(nnz):
        y, x = ys[n], xs[n]
        for i in range(4):
            dy, dx = offsets[i]
            n_y, n_x = y + dy, x + dx
            e = 4 * n + i
            
            if 0 <= n_y < img_s_h and 0 <= n_x < img_s_w:
                A_data[idx] = 1
                A_rows[idx] = e
                A_cols[idx] = im2var[y, x]
                idx += 1
                
                b[e] = img_s[y, x] - img_s[n_y, n_x]
                
                if im2var[n_y, n_x] != -1:
                    A_data[idx] = -1
                    A_rows[idx] = e
                    A_cols[idx] = im2var[n_y, n_x]
                    idx += 1
                else:
                    b[e] += img_t[n_y, n_x]
    
    return A_data[:idx], A_rows[:idx], A_cols[:idx], b

def poisson_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype=np.int32)
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.nonzero(mask)
    
    A_data, A_rows, A_cols, b = build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
    
    A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(4*nnz, nnz))
    v = splin.lsqr(A, b)[0]
    
    img_t_out = img_t.copy()
    img_t_out[mask > 0] = v[im2var[mask > 0]]
    
    return np.clip(img_t_out, 0, 1)

@jit(nopython=True)
def neighbours(i: int, j: int, max_i: int, max_j: int):
    pairs = []
    for n in (-1, 1):
        if 0 <= i+n <= max_i:
            pairs.append((i+n, j))
        if 0 <= j+n <= max_j:
            pairs.append((i, j+n))
    return pairs

@jit(nopython=True)
def build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
    nnz = len(ys)
    img_s_h, img_s_w = img_s.shape
    A_data = np.zeros(8 * nnz, dtype=np.float64)
    A_rows = np.zeros(8 * nnz, dtype=np.int32)
    A_cols = np.zeros(8 * nnz, dtype=np.int32)
    b = np.zeros(4 * nnz, dtype=np.float64)
    
    idx = 0
    e = 0
    for n in range(nnz):
        y, x = ys[n], xs[n]
        for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1):
            ds = img_s[y, x] - img_s[n_y, n_x]
            dt = img_t[y, x] - img_t[n_y, n_x]
            d = ds if abs(ds) > abs(dt) else dt
            
            A_data[idx] = 1
            A_rows[idx] = e
            A_cols[idx] = im2var[y, x]
            idx += 1
            
            b[e] = d
            
            if im2var[n_y, n_x] != -1:
                A_data[idx] = -1
                A_rows[idx] = e
                A_cols[idx] = im2var[n_y, n_x]
                idx += 1
            else:
                b[e] += img_t[n_y, n_x]
            e += 1
    
    return A_data[:idx], A_rows[:idx], A_cols[:idx], b[:e]

def mixed_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype=np.int32)
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.nonzero(mask)
    
    A_data, A_rows, A_cols, b = build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
    
    A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(len(b), nnz))
    
    v = splin.spsolve(A.T @ A, A.T @ b)
    
    img_t_out = img_t.copy()
    img_t_out[mask > 0] = v[im2var[mask > 0]]
    
    return np.clip(img_t_out, 0, 1)

def _2d_gaussian(sigma: float) -> np.ndarray:
    ksize = np.int64(np.ceil(sigma)*6+1)
    gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
    return gaussian_1d * np.transpose(gaussian_1d)

def _low_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
    return cv2.filter2D(img, -1, _2d_gaussian(sigma))

def _high_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
    return img - _low_pass_filter(img, sigma)

def _gaus_pyramid(img: np.ndarray, depth: int, sigma: int):
    _im = img.copy()
    
    pyramid = []
    for d in range(depth-1):
        _im = _low_pass_filter(_im.copy(), sigma)
        pyramid.append(_im)
        _im = cv2.pyrDown(_im)
        
    return pyramid 

def _lap_pyramid(img: np.ndarray, depth: int, sigma: int):
    _im = img.copy()
    
    pyramid = []
    for d in range(depth-1):
        lap = _high_pass_filter(_im.copy(), sigma)
        pyramid.append(lap)
        _im = cv2.pyrDown(_im)
        
    return pyramid 

def _blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray) -> np.ndarray:
    return img1 * mask + img2 * (1.0 - mask)

def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth: int, sigma: int) -> np.ndarray:
    mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
    img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)

    blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1]
    
    h, w = blended[0].shape[:2]
    
    img1 = cv2.resize(img1, (w, h))
    img2 = cv2.resize(img2, (w, h))
    mask = cv2.resize(mask, (w, h))

    blanded_img = _blend(img1, img2, mask)
    blanded_img = cv2.resize(blanded_img, blended[0].shape[:2])
    
    imgs = []
    for d in range(0, depth-1):
        gaussian_img = _low_pass_filter(blanded_img.copy(), sigma)
        reconstructed_img = cv2.add(blended[d], gaussian_img)
        
        imgs.append(reconstructed_img)
        blanded_img = cv2.pyrUp(reconstructed_img)
        
    return np.clip(imgs[-1], 0, 1)

def get_image(img_input, mask=False, scale=True):
    if isinstance(img_input, dict):
        img = img_input.get('composite') or img_input.get('background')
    elif isinstance(img_input, np.ndarray):
        img = img_input
    elif isinstance(img_input, str):
        img = cv2.imread(img_input)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    else:
        raise ValueError(f"Unsupported image input type: {type(img_input)}")

    if img is None:
        raise ValueError("Failed to load image")

    if mask:
        if len(img.shape) == 3:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        return np.where(img > 127, 1, 0).astype(np.uint8)  # Threshold at 127 for the mask
    
    if scale and img.dtype != np.float64:
        return img.astype('float64') / 255.0
    
    return img

def blend_images(bg_img, obj_img, mask_img, method):
    bg_img = get_image(bg_img)
    obj_img = get_image(obj_img)
    
    # Handle different input types for mask_img
    if isinstance(mask_img, dict):
        mask_img = mask_img.get('composite') or mask_img.get('background')
    elif isinstance(mask_img, str):
        mask_img = cv2.imread(mask_img, cv2.IMREAD_GRAYSCALE)
    
    mask_img = get_image(mask_img, mask=True)

    if method == "Poisson":
        blend_img = np.zeros_like(bg_img)
        for b in range(3):
            blend_img[:,:,b] = poisson_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
    elif method == "Mixed Gradient":
        blend_img = np.zeros_like(bg_img)
        for b in range(3):
            blend_img[:,:,b] = mixed_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
    elif method == "Laplacian":
        mask_stack = np.stack((mask_img.astype(float),) * 3, axis=-1)
        blend_img = laplacian_blend(obj_img, bg_img, mask_stack, 5, 25.0)
    
    return (blend_img * 255).astype(np.uint8)

def predict(im):
    return im["composite"]

with gr.Blocks(theme='bethecloud/storj_theme') as iface:
    gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
    
    with gr.Row():
        bg_img = gr.Image(label="Background Image", type="numpy")
        obj_img = gr.Image(label="Object Image", type="numpy")
    
    with gr.Row():
        mask_img = gr.ImageEditor(
            label="Mask Image",
            type="numpy",
            crop_size="1:1",
        )
        mask_preview = gr.Image(label="Mask Preview")
    
    method = gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method", value="Poisson")
    
    blend_button = gr.Button("Blend Images")
    
    output_image = gr.Image(label="Blended Image")
    
    mask_img.change(predict, outputs=mask_preview, inputs=mask_img, show_progress="hidden")
    
    blend_button.click(
        blend_images,
        inputs=[bg_img, obj_img, mask_img, method],
        outputs=output_image
    )
    
    def create_image_editor_input(image_path):
        return {
            "background": image_path,
            "layers": [],
            "composite": image_path
        }

    gr.Examples(
        examples=[
            ["img1.jpg", "img2.jpg", create_image_editor_input("mask1.jpg"), "Poisson"],
            ["img3.jpg", "img4.jpg", create_image_editor_input("mask2.jpg"), "Mixed Gradient"],
            ["img6.jpg", "img9.jpg", create_image_editor_input("mask3.jpg"), "Laplacian"]
        ],
        inputs=[bg_img, obj_img, mask_img, method],
        outputs=output_image,
        fn=blend_images,
        cache_examples=True,
    )

iface.launch()