Blending / app.py
gokaygokay's picture
Update app.py
21085cc verified
raw
history blame
7.37 kB
import cv2
import numpy as np
import scipy as sp
import scipy.sparse.linalg
import gradio as gr
import os
def get_image(img, mask=False):
if mask:
if isinstance(img, str):
img = cv2.imread(img, cv2.IMREAD_GRAYSCALE)
elif img.ndim == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return np.where(img > 127, 1, 0)
else:
if isinstance(img, str):
img = cv2.imread(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
elif img.ndim == 2:
img = np.stack((img,)*3, axis=-1)
return img.astype('double') / 255.0
def neighbours(i, j, max_i, max_j):
pairs = []
for n in [-1, 1]:
if 0 <= i+n <= max_i:
pairs.append((i+n, j))
if 0 <= j+n <= max_j:
pairs.append((i, j+n))
return pairs
def poisson_blend(img_s, mask, img_t):
img_s_h, img_s_w = img_s.shape
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype='int32')
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.where(mask == 1)
# Precompute neighbor indices
y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
# Compute differences
d = img_s[ys, xs][:, np.newaxis] - img_s[y_n.T, x_n.T].T
# Construct sparse matrix A and vector b
rows = np.arange(4*nnz)
cols = np.repeat(im2var[ys, xs], 4)
data = np.ones(4*nnz)
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
mask_n = (im2var[y_n, x_n] != -1)
cols_n = im2var[y_n, x_n][mask_n]
rows_n = np.arange(4*nnz)[mask_n.ravel()]
data_n = -np.ones(cols_n.size)
A += sp.sparse.csr_matrix((data_n, (rows_n, cols_n)), shape=(4*nnz, nnz))
b = d.ravel()
b[~mask_n.ravel()] += img_t[y_n, x_n][~mask_n]
# Solve the system
v = sp.sparse.linalg.lsqr(A, b)[0]
# Update the target image
img_t_out = img_t.copy()
img_t_out[ys, xs] = v
return np.clip(img_t_out, 0, 1)
def mixed_blend(img_s, mask, img_t):
img_s_h, img_s_w = img_s.shape
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype='int32')
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.where(mask == 1)
# Precompute neighbor indices
y_n = np.clip(np.stack([ys-1, ys+1, ys, ys]), 0, img_s_h-1)
x_n = np.clip(np.stack([xs, xs, xs-1, xs+1]), 0, img_s_w-1)
# Compute differences
ds = img_s[ys, xs][:, np.newaxis] - img_s[y_n, x_n]
dt = img_t[ys, xs][:, np.newaxis] - img_t[y_n, x_n]
# Choose larger gradient
d = np.where(np.abs(ds) > np.abs(dt), ds, dt)
# Construct sparse matrix A and vector b
rows = np.repeat(np.arange(4*nnz), 2)
cols = np.column_stack([np.repeat(im2var[ys, xs], 4), im2var[y_n, x_n].ravel()])
data = np.column_stack([np.ones(4*nnz), -np.ones(4*nnz)]).ravel()
mask_n = (im2var[y_n, x_n] != -1).ravel()
rows = rows[mask_n]
cols = cols[mask_n]
data = data[mask_n]
A = sp.sparse.csr_matrix((data, (rows, cols)), shape=(4*nnz, nnz))
b = d.ravel()
b[~mask_n] += img_t[y_n, x_n].ravel()[~mask_n]
# Solve the system
v = sp.sparse.linalg.lsqr(A, b)[0]
# Update the target image
img_t_out = img_t.copy()
img_t_out[ys, xs] = v
return np.clip(img_t_out, 0, 1)
def laplacian_blend(img1, img2, mask, depth=5, sigma=25):
def _2d_gaussian(sigma):
ksize = int(np.ceil(sigma) * 6 + 1)
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
return gaussian_1d @ gaussian_1d.T
def _low_pass_filter(img, sigma):
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
def _high_pass_filter(img, sigma):
return img - _low_pass_filter(img, sigma)
def _gaus_pyramid(img, depth, sigma):
pyramid = [img]
for _ in range(depth - 1):
img = _low_pass_filter(cv2.pyrDown(img), sigma)
pyramid.append(img)
return pyramid
def _lap_pyramid(img, depth, sigma):
pyramid = []
for d in range(depth - 1):
next_img = cv2.pyrDown(img)
lap = img - cv2.pyrUp(next_img, dstsize=img.shape[:2])
pyramid.append(lap)
img = next_img
pyramid.append(img)
return pyramid
def _blend(img1, img2, mask):
return img1 * mask + img2 * (1.0 - mask)
# Ensure mask is 3D
if mask.ndim == 2:
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
# Create Gaussian pyramid for mask
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
# Create Laplacian pyramids for images
img1_lap_pyramid = _lap_pyramid(img1, depth, sigma)
img2_lap_pyramid = _lap_pyramid(img2, depth, sigma)
# Blend pyramids
blended_pyramid = [_blend(img1_lap, img2_lap, mask_gaus)
for img1_lap, img2_lap, mask_gaus
in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)]
# Reconstruct image
blended_img = blended_pyramid[-1]
for lap in reversed(blended_pyramid[:-1]):
blended_img = cv2.pyrUp(blended_img, dstsize=lap.shape[:2])
blended_img += lap
return np.clip(blended_img, 0, 1)
def load_example_images(bg_path, obj_path, mask_path):
bg_img = cv2.imread(bg_path)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
obj_img = cv2.imread(obj_path)
obj_img = cv2.cvtColor(obj_img, cv2.COLOR_BGR2RGB)
mask_img = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask_img = np.where(mask_img > 127, 255, 0).astype(np.uint8)
return bg_img, obj_img, mask_img
# Modify the blend_images function to accept numpy arrays directly
def blend_images(bg_img, obj_img, mask_img, blend_method):
bg_img = get_image(bg_img)
obj_img = get_image(obj_img)
mask_img = get_image(mask_img, mask=True)
# Ensure mask is 2D
if mask_img.ndim == 3:
mask_img = mask_img[:,:,0] # Take the first channel if it's 3D
# Resize mask to match object image size
mask_img = cv2.resize(mask_img, (obj_img.shape[1], obj_img.shape[0]))
if blend_method == "Poisson":
blend_func = poisson_blend
elif blend_method == "Mixed Gradient":
blend_func = mixed_blend
else: # Laplacian
return laplacian_blend(obj_img, bg_img, np.stack((mask_img,)*3, axis=-1), 5, 25)
blend_img = np.zeros(bg_img.shape)
for b in range(3):
blend_img[:,:,b] = blend_func(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
return (blend_img * 255).astype(np.uint8)
examples = [
["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
]
iface = gr.Interface(
fn=blend_images,
inputs=[
gr.Image(label="Background Image", type="numpy"),
gr.Image(label="Object Image", type="numpy"),
gr.Image(label="Mask Image", type="numpy"),
gr.Radio(["Poisson", "Mixed Gradient", "Laplacian"], label="Blending Method")
],
outputs=gr.Image(label="Blended Image"),
title="Image Blending with Examples",
description="Choose from example images or upload your own to blend using different methods.",
examples=examples,
cache_examples=True
)
iface.launch()