Blending / app.py
gokaygokay's picture
Update app.py
91f7a1c verified
import cv2
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splin
from numba import jit
import gradio as gr
@jit(nopython=True)
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(16 * nnz, dtype=np.float64)
A_rows = np.zeros(16 * nnz, dtype=np.int32)
A_cols = np.zeros(16 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
offsets = np.array([(0, 1), (0, -1), (1, 0), (-1, 0)])
idx = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for i in range(4):
dy, dx = offsets[i]
n_y, n_x = y + dy, x + dx
e = 4 * n + i
if 0 <= n_y < img_s_h and 0 <= n_x < img_s_w:
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = img_s[y, x] - img_s[n_y, n_x]
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
return A_data[:idx], A_rows[:idx], A_cols[:idx], b
def poisson_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(4*nnz, nnz))
v = splin.lsqr(A, b)[0]
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
@jit(nopython=True)
def neighbours(i: int, j: int, max_i: int, max_j: int):
pairs = []
for n in (-1, 1):
if 0 <= i+n <= max_i:
pairs.append((i+n, j))
if 0 <= j+n <= max_j:
pairs.append((i, j+n))
return pairs
@jit(nopython=True)
def build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
nnz = len(ys)
img_s_h, img_s_w = img_s.shape
A_data = np.zeros(8 * nnz, dtype=np.float64)
A_rows = np.zeros(8 * nnz, dtype=np.int32)
A_cols = np.zeros(8 * nnz, dtype=np.int32)
b = np.zeros(4 * nnz, dtype=np.float64)
idx = 0
e = 0
for n in range(nnz):
y, x = ys[n], xs[n]
for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1):
ds = img_s[y, x] - img_s[n_y, n_x]
dt = img_t[y, x] - img_t[n_y, n_x]
d = ds if abs(ds) > abs(dt) else dt
A_data[idx] = 1
A_rows[idx] = e
A_cols[idx] = im2var[y, x]
idx += 1
b[e] = d
if im2var[n_y, n_x] != -1:
A_data[idx] = -1
A_rows[idx] = e
A_cols[idx] = im2var[n_y, n_x]
idx += 1
else:
b[e] += img_t[n_y, n_x]
e += 1
return A_data[:idx], A_rows[:idx], A_cols[:idx], b[:e]
def mixed_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
nnz = np.sum(mask > 0)
im2var = np.full(mask.shape, -1, dtype=np.int32)
im2var[mask > 0] = np.arange(nnz)
ys, xs = np.nonzero(mask)
A_data, A_rows, A_cols, b = build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(len(b), nnz))
v = splin.spsolve(A.T @ A, A.T @ b)
img_t_out = img_t.copy()
img_t_out[mask > 0] = v[im2var[mask > 0]]
return np.clip(img_t_out, 0, 1)
def _2d_gaussian(sigma: float) -> np.ndarray:
ksize = np.int64(np.ceil(sigma)*6+1)
gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
return gaussian_1d * np.transpose(gaussian_1d)
def _low_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return cv2.filter2D(img, -1, _2d_gaussian(sigma))
def _high_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
return img - _low_pass_filter(img, sigma)
def _gaus_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
_im = _low_pass_filter(_im.copy(), sigma)
pyramid.append(_im)
_im = cv2.pyrDown(_im)
return pyramid
def _lap_pyramid(img: np.ndarray, depth: int, sigma: int):
_im = img.copy()
pyramid = []
for d in range(depth-1):
lap = _high_pass_filter(_im.copy(), sigma)
pyramid.append(lap)
_im = cv2.pyrDown(_im)
return pyramid
def _blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray) -> np.ndarray:
return img1 * mask + img2 * (1.0 - mask)
def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth: int, sigma: int) -> np.ndarray:
mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)
blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1]
h, w = blended[0].shape[:2]
img1 = cv2.resize(img1, (w, h))
img2 = cv2.resize(img2, (w, h))
mask = cv2.resize(mask, (w, h))
blanded_img = _blend(img1, img2, mask)
blanded_img = cv2.resize(blanded_img, blended[0].shape[:2])
imgs = []
for d in range(0, depth-1):
gaussian_img = _low_pass_filter(blanded_img.copy(), sigma)
gaussian_img = cv2.resize(gaussian_img, (blended[d].shape[1], blended[d].shape[0])) # Ensure sizes match
# Ensure the number of channels match
if len(gaussian_img.shape) == 2:
gaussian_img = np.stack([gaussian_img] * 3, axis=-1)
reconstructed_img = cv2.add(blended[d], gaussian_img)
imgs.append(reconstructed_img)
blanded_img = cv2.pyrUp(reconstructed_img)
return np.clip(imgs[-1], 0, 1)
def get_image(img_path: str, mask: bool=False, scale: bool=True) -> np.array:
"""
Gets image in appropriate format
"""
if isinstance(img_path, np.ndarray):
img = img_path
else:
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for file inputs
if mask:
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
_, binary_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
return np.where(binary_mask == 255, 1, 0)
if scale:
return img.astype('double') / 255.0
return img
def blend_images(bg_img, obj_img, mask_img, method):
bg_img = get_image(bg_img)
obj_img = get_image(obj_img)
mask_img = get_image(mask_img, mask=True)
if method == "Poisson":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = poisson_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Mixed Gradient":
blend_img = np.zeros_like(bg_img)
for b in range(3):
blend_img[:,:,b] = mixed_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
elif method == "Laplacian":
mask_stack = np.stack((mask_img.astype(float),) * 3, axis=-1)
blend_img = laplacian_blend(obj_img, bg_img, mask_stack, 5, 25.0)
return (blend_img * 255).astype(np.uint8)
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
with gr.Row():
with gr.Column():
bg_img = gr.Image(label="Background Image", type="numpy", height=300)
with gr.Column():
obj_img = gr.Image(label="Object Image", type="numpy", height=300)
with gr.Column():
mask_img = gr.Image(label="Mask Image", type="numpy", height=300)
with gr.Row():
with gr.Column():
method = gr.Radio(["Laplacian", "Poisson", "Mixed Gradient"], label="Blending Method", value="Laplacian")
with gr.Column():
blend_button = gr.Button("Blend Images")
output_image = gr.Image(label="Blended Image")
blend_button.click(
blend_images,
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image
)
gr.Examples(
examples=[
["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
],
inputs=[bg_img, obj_img, mask_img, method],
outputs=output_image,
fn=blend_images,
cache_examples=True,
)
iface.launch()