File size: 8,990 Bytes
a90cc5e
 
3bcb760
 
 
a90cc5e
 
3bcb760
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c5763
3bcb760
e9c5763
 
3bcb760
e9c5763
3bcb760
e9c5763
3bcb760
 
21085cc
a90cc5e
3bcb760
a90cc5e
 
 
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929c20c
3bcb760
929c20c
a90cc5e
3bcb760
903793a
3bcb760
903793a
3bcb760
929c20c
3bcb760
a90cc5e
 
3bcb760
a90cc5e
 
 
3bcb760
 
 
 
e9c5763
3bcb760
 
e9c5763
3bcb760
 
a90cc5e
3bcb760
 
a90cc5e
3bcb760
 
 
 
 
 
 
a90cc5e
3bcb760
 
 
 
 
 
 
 
 
 
a90cc5e
3bcb760
 
a90cc5e
3bcb760
 
 
 
 
 
37327f6
3bcb760
37327f6
 
 
 
 
 
 
 
 
 
91f7a1c
 
 
 
 
 
3bcb760
 
37327f6
 
 
 
3bcb760
1486d83
 
 
 
 
 
d11da87
1486d83
 
ee16454
 
 
 
1486d83
 
ee16454
1486d83
 
ee16454
 
 
3bcb760
d11da87
 
 
3bcb760
 
 
 
 
 
 
 
 
 
d11da87
3bcb760
a90cc5e
 
 
e2763db
 
 
 
1486d83
 
 
 
 
dd886b7
510b9e9
1486d83
37327f6
1486d83
 
e2763db
dff83a6
e2763db
 
 
 
 
1486d83
235021a
e2763db
c3faeca
37327f6
1486d83
 
c3faeca
e2763db
 
 
 
 
a90cc5e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import cv2
import numpy as np
import scipy.sparse as sp
import scipy.sparse.linalg as splin
from numba import jit
import gradio as gr

@jit(nopython=True)
def build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
    nnz = len(ys)
    img_s_h, img_s_w = img_s.shape
    A_data = np.zeros(16 * nnz, dtype=np.float64)
    A_rows = np.zeros(16 * nnz, dtype=np.int32)
    A_cols = np.zeros(16 * nnz, dtype=np.int32)
    b = np.zeros(4 * nnz, dtype=np.float64)
    
    offsets = np.array([(0, 1), (0, -1), (1, 0), (-1, 0)])
    
    idx = 0
    for n in range(nnz):
        y, x = ys[n], xs[n]
        for i in range(4):
            dy, dx = offsets[i]
            n_y, n_x = y + dy, x + dx
            e = 4 * n + i
            
            if 0 <= n_y < img_s_h and 0 <= n_x < img_s_w:
                A_data[idx] = 1
                A_rows[idx] = e
                A_cols[idx] = im2var[y, x]
                idx += 1
                
                b[e] = img_s[y, x] - img_s[n_y, n_x]
                
                if im2var[n_y, n_x] != -1:
                    A_data[idx] = -1
                    A_rows[idx] = e
                    A_cols[idx] = im2var[n_y, n_x]
                    idx += 1
                else:
                    b[e] += img_t[n_y, n_x]
    
    return A_data[:idx], A_rows[:idx], A_cols[:idx], b

def poisson_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype=np.int32)
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.nonzero(mask)
    
    A_data, A_rows, A_cols, b = build_poisson_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
    
    A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(4*nnz, nnz))
    v = splin.lsqr(A, b)[0]
    
    img_t_out = img_t.copy()
    img_t_out[mask > 0] = v[im2var[mask > 0]]
    
    return np.clip(img_t_out, 0, 1)

@jit(nopython=True)
def neighbours(i: int, j: int, max_i: int, max_j: int):
    pairs = []
    for n in (-1, 1):
        if 0 <= i+n <= max_i:
            pairs.append((i+n, j))
        if 0 <= j+n <= max_j:
            pairs.append((i, j+n))
    return pairs

@jit(nopython=True)
def build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask):
    nnz = len(ys)
    img_s_h, img_s_w = img_s.shape
    A_data = np.zeros(8 * nnz, dtype=np.float64)
    A_rows = np.zeros(8 * nnz, dtype=np.int32)
    A_cols = np.zeros(8 * nnz, dtype=np.int32)
    b = np.zeros(4 * nnz, dtype=np.float64)
    
    idx = 0
    e = 0
    for n in range(nnz):
        y, x = ys[n], xs[n]
        for n_y, n_x in neighbours(y, x, img_s_h-1, img_s_w-1):
            ds = img_s[y, x] - img_s[n_y, n_x]
            dt = img_t[y, x] - img_t[n_y, n_x]
            d = ds if abs(ds) > abs(dt) else dt
            
            A_data[idx] = 1
            A_rows[idx] = e
            A_cols[idx] = im2var[y, x]
            idx += 1
            
            b[e] = d
            
            if im2var[n_y, n_x] != -1:
                A_data[idx] = -1
                A_rows[idx] = e
                A_cols[idx] = im2var[n_y, n_x]
                idx += 1
            else:
                b[e] += img_t[n_y, n_x]
            e += 1
    
    return A_data[:idx], A_rows[:idx], A_cols[:idx], b[:e]

def mixed_blend_fast_jit(img_s: np.ndarray, mask: np.ndarray, img_t: np.ndarray) -> np.ndarray:
    nnz = np.sum(mask > 0)
    im2var = np.full(mask.shape, -1, dtype=np.int32)
    im2var[mask > 0] = np.arange(nnz)
    
    ys, xs = np.nonzero(mask)
    
    A_data, A_rows, A_cols, b = build_mixed_blend_sparse_matrix(ys, xs, im2var, img_s, img_t, mask)
    
    A = sp.csr_matrix((A_data, (A_rows, A_cols)), shape=(len(b), nnz))
    
    v = splin.spsolve(A.T @ A, A.T @ b)
    
    img_t_out = img_t.copy()
    img_t_out[mask > 0] = v[im2var[mask > 0]]
    
    return np.clip(img_t_out, 0, 1)

def _2d_gaussian(sigma: float) -> np.ndarray:
    ksize = np.int64(np.ceil(sigma)*6+1)
    gaussian_1d = cv2.getGaussianKernel(ksize, sigma)
    return gaussian_1d * np.transpose(gaussian_1d)

def _low_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
    return cv2.filter2D(img, -1, _2d_gaussian(sigma))

def _high_pass_filter(img: np.ndarray, sigma: float) -> np.ndarray:
    return img - _low_pass_filter(img, sigma)

def _gaus_pyramid(img: np.ndarray, depth: int, sigma: int):
    _im = img.copy()
    
    pyramid = []
    for d in range(depth-1):
        _im = _low_pass_filter(_im.copy(), sigma)
        pyramid.append(_im)
        _im = cv2.pyrDown(_im)
        
    return pyramid 

def _lap_pyramid(img: np.ndarray, depth: int, sigma: int):
    _im = img.copy()
    
    pyramid = []
    for d in range(depth-1):
        lap = _high_pass_filter(_im.copy(), sigma)
        pyramid.append(lap)
        _im = cv2.pyrDown(_im)
        
    return pyramid 

def _blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray) -> np.ndarray:
    return img1 * mask + img2 * (1.0 - mask)

def laplacian_blend(img1: np.ndarray, img2: np.ndarray, mask: np.ndarray, depth: int, sigma: int) -> np.ndarray:
    mask_gaus_pyramid = _gaus_pyramid(mask, depth, sigma)
    img1_lap_pyramid, img2_lap_pyramid = _lap_pyramid(img1, depth, sigma), _lap_pyramid(img2, depth, sigma)

    blended = [_blend(obj, bg, mask) for obj, bg, mask in zip(img1_lap_pyramid, img2_lap_pyramid, mask_gaus_pyramid)][::-1]
    
    h, w = blended[0].shape[:2]
    
    img1 = cv2.resize(img1, (w, h))
    img2 = cv2.resize(img2, (w, h))
    mask = cv2.resize(mask, (w, h))

    blanded_img = _blend(img1, img2, mask)
    blanded_img = cv2.resize(blanded_img, blended[0].shape[:2])
    
    imgs = []
    for d in range(0, depth-1):
        gaussian_img = _low_pass_filter(blanded_img.copy(), sigma)
        gaussian_img = cv2.resize(gaussian_img, (blended[d].shape[1], blended[d].shape[0]))  # Ensure sizes match
        
        # Ensure the number of channels match
        if len(gaussian_img.shape) == 2:
            gaussian_img = np.stack([gaussian_img] * 3, axis=-1)
        
        reconstructed_img = cv2.add(blended[d], gaussian_img)
        
        imgs.append(reconstructed_img)
        blanded_img = cv2.pyrUp(reconstructed_img)
        
    return np.clip(imgs[-1], 0, 1)

def get_image(img_path: str, mask: bool=False, scale: bool=True) -> np.array:
    """
    Gets image in appropriate format
    """
    if isinstance(img_path, np.ndarray):
        img = img_path
    else:
        img = cv2.imread(img_path)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB for file inputs
    
    if mask:
        if len(img.shape) == 3:
            img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        _, binary_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
        return np.where(binary_mask == 255, 1, 0)
    
    if scale:
        return img.astype('double') / 255.0
    
    return img

def blend_images(bg_img, obj_img, mask_img, method):
    bg_img = get_image(bg_img)
    obj_img = get_image(obj_img)
    mask_img = get_image(mask_img, mask=True)

    if method == "Poisson":
        blend_img = np.zeros_like(bg_img)
        for b in range(3):
            blend_img[:,:,b] = poisson_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
    elif method == "Mixed Gradient":
        blend_img = np.zeros_like(bg_img)
        for b in range(3):
            blend_img[:,:,b] = mixed_blend_fast_jit(obj_img[:,:,b], mask_img, bg_img[:,:,b].copy())
    elif method == "Laplacian":
        mask_stack = np.stack((mask_img.astype(float),) * 3, axis=-1)
        blend_img = laplacian_blend(obj_img, bg_img, mask_stack, 5, 25.0)
    
    return (blend_img * 255).astype(np.uint8)

with gr.Blocks(theme='bethecloud/storj_theme') as iface:
    gr.HTML("<h1>Image Blending with Multiple Methods</h1>")
    
    with gr.Row():
        with gr.Column():
            bg_img = gr.Image(label="Background Image", type="numpy", height=300)
        with gr.Column():
            obj_img = gr.Image(label="Object Image", type="numpy", height=300)
        with gr.Column():
            mask_img = gr.Image(label="Mask Image", type="numpy", height=300)
    with gr.Row():
        with gr.Column():
            method = gr.Radio(["Laplacian", "Poisson", "Mixed Gradient"], label="Blending Method", value="Laplacian")
        with gr.Column():
            blend_button = gr.Button("Blend Images")
    
    output_image = gr.Image(label="Blended Image")
    
    blend_button.click(
        blend_images,
        inputs=[bg_img, obj_img, mask_img, method],
        outputs=output_image
    )
    
    gr.Examples(
        examples=[
            ["img1.jpg", "img2.jpg", "mask1.jpg", "Poisson"],
            ["img3.jpg", "img4.jpg", "mask2.jpg", "Mixed Gradient"],
            ["img6.jpg", "img9.jpg", "mask3.jpg", "Laplacian"]
        ],
        inputs=[bg_img, obj_img, mask_img, method],
        outputs=output_image,
        fn=blend_images,
        cache_examples=True,
    )

iface.launch()