File size: 4,295 Bytes
3569994
9d1c96b
 
eab7249
a587619
9d1c96b
eab7249
04b5477
86c20bd
04b5477
 
 
daf5775
eab7249
 
 
 
3d7f6bb
daf5775
 
 
 
 
9d1c96b
 
 
a587619
9d1c96b
daf5775
 
 
9d1c96b
3569994
daf5775
 
 
 
 
 
a587619
daf5775
 
 
a587619
 
daf5775
 
 
 
 
 
 
 
 
 
 
 
a587619
 
daf5775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7f6bb
eab7249
daf5775
eab7249
daf5775
 
 
 
 
eab7249
 
daf5775
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, AutoModelForCausalLM, AutoTokenizer, pipeline
from diffusers import StableDiffusionPipeline
import torch
import gradio as gr
import os
from PIL import Image

# Load the Hugging Face API key from environment variables
hf_api_key = os.getenv("multimodel_token")
if hf_api_key is None:
    raise ValueError("Hugging Face API key not found! Please set the 'full_token' environment variable.")

# Load the translation model and tokenizer
model_name = "facebook/mbart-large-50-many-to-one-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)

# Load the text generation model
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
text_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
text_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name)
text_generator = pipeline("text-generation", model=text_model, tokenizer=text_tokenizer)

# Load the alvdansen/flux-koda image generation model using Diffusers
pipe = StableDiffusionPipeline.from_pretrained("alvdansen/flux-koda", use_auth_token=hf_api_key)
pipe.to("cuda")  # Use GPU for faster generation, if available

# Function to generate an image using alvdansen/flux-koda model
def generate_image_from_text(translated_text):
    try:
        print(f"Generating image from translated text: {translated_text}")
        # Generate the image using the alvdansen/flux-koda model
        image = pipe(translated_text).images[0]
        print("Image generation completed.")
        return image, None
    except Exception as e:
        print(f"Error during image generation: {e}")
        return None, f"Error during image generation: {e}"

# Function to generate a short paragraph based on the translated text
def generate_short_paragraph_from_text(translated_text):
    try:
        print(f"Generating a short paragraph from translated text: {translated_text}")
        # Generate a shorter paragraph from the translated text using smaller settings
        paragraph = text_generator(translated_text, max_length=150, num_return_sequences=1, temperature=0.2, top_p=0.8)[0]['generated_text']
        print(f"Paragraph generation completed: {paragraph}")
        return paragraph
    except Exception as e:
        print(f"Error during paragraph generation: {e}")
        return f"Error during paragraph generation: {e}"

# Define the function to translate Tamil text, generate a short paragraph, and create an image
def translate_generate_paragraph_and_image(tamil_text):
    # Step 1: Translate Tamil text to English using mbart-large-50
    try:
        print("Translating Tamil text to English...")
        tokenizer.src_lang = "ta_IN"
        inputs = tokenizer(tamil_text, return_tensors="pt")
        translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
        translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
        print(f"Translation completed: {translated_text}")
    except Exception as e:
        return f"Error during translation: {e}", "", None, None

    # Step 2: Generate a shorter paragraph based on the translated English text
    paragraph = generate_short_paragraph_from_text(translated_text)
    if "Error" in paragraph:
        return translated_text, paragraph, None, None

    # Step 3: Generate an image using the translated English text
    image, error_message = generate_image_from_text(translated_text)
    if error_message:
        return translated_text, paragraph, None, error_message

    return translated_text, paragraph, image, None

# Gradio interface setup
iface = gr.Interface(
    fn=translate_generate_paragraph_and_image,
    inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
    outputs=[gr.Textbox(label="Translated English Text"), 
             gr.Textbox(label="Generated Short Paragraph"),
             gr.Image(label="Generated Image")],
    title="Tamil to English Translation, Short Paragraph Generation, and Image Creation",
    description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate a short paragraph, and create an image using the translated text.",
)

iface.launch()