gospacedev commited on
Commit
61b53d6
Β·
verified Β·
1 Parent(s): 6ee0077

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -20
app.py CHANGED
@@ -13,9 +13,9 @@ LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
13
  # Initial system prompt
14
  system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
15
 
16
- # Global variables for initial history
17
- initial_instruct_history = system_prompt
18
- initial_formatted_history = ""
19
 
20
  # Create inference client for text generation
21
  client = InferenceClient(LLM_MODEL_NAME)
@@ -51,7 +51,9 @@ def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95,
51
  return output
52
 
53
  @spaces.GPU(duration=60)
54
- def transcribe(audio, instruct_history, formatted_history):
 
 
55
  sr, y = audio
56
  y = y.astype(np.float32)
57
  y /= np.max(np.abs(y))
@@ -60,7 +62,8 @@ def transcribe(audio, instruct_history, formatted_history):
60
  transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
61
 
62
  # Append user input to history
63
- formatted_history += f"Human: {transcribed_user_audio}\n\n"
 
64
  instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
65
 
66
  # Generate LLM response
@@ -68,21 +71,19 @@ def transcribe(audio, instruct_history, formatted_history):
68
 
69
  # Append AI response to history
70
  instruct_history += f" {llm_response}</s>"
71
- formatted_history += f"Friday: {llm_response}\n\n"
72
 
73
  # Convert AI response to audio
74
  audio_response = gTTS(llm_response)
75
  audio_response.save("response.mp3")
76
 
77
- # Return the updated history and audio
78
- return "response.mp3", formatted_history, instruct_history
79
 
80
- with gr.Blocks() as demo:
81
- gr.HTML("<center><h1>Friday: AI Virtual Assistant</h1><center>")
82
 
83
- # Initialize state
84
- instruct_state = gr.State(value=initial_instruct_history)
85
- formatted_state = gr.State(value=initial_formatted_history)
86
 
87
  with gr.Row():
88
  audio_input = gr.Audio(label="Human", sources="microphone")
@@ -93,13 +94,8 @@ with gr.Blocks() as demo:
93
  # Textbox to display the full conversation history
94
  transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
95
 
96
- # Pass states to the transcribe function and update them after each click
97
- transcribe_btn.click(
98
- fn=transcribe,
99
- inputs=[audio_input, instruct_state, formatted_state],
100
- outputs=[output_audio, transcription_box, instruct_state, formatted_state]
101
- )
102
 
103
  if __name__ == "__main__":
104
  demo.queue()
105
- demo.launch()
 
13
  # Initial system prompt
14
  system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
15
 
16
+ # Global variables for history
17
+ instruct_history = system_prompt
18
+ formatted_history = ""
19
 
20
  # Create inference client for text generation
21
  client = InferenceClient(LLM_MODEL_NAME)
 
51
  return output
52
 
53
  @spaces.GPU(duration=60)
54
+ def transcribe(audio, past_history):
55
+ global instruct_history, formatted_history
56
+
57
  sr, y = audio
58
  y = y.astype(np.float32)
59
  y /= np.max(np.abs(y))
 
62
  transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
63
 
64
  # Append user input to history
65
+ formatted_history += past_history
66
+ formatted_history += f"πŸ˜ƒ Human: {transcribed_user_audio}\n\n"
67
  instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
68
 
69
  # Generate LLM response
 
71
 
72
  # Append AI response to history
73
  instruct_history += f" {llm_response}</s>"
74
+ formatted_history += f"πŸ€– Friday: {llm_response}\n\n"
75
 
76
  # Convert AI response to audio
77
  audio_response = gTTS(llm_response)
78
  audio_response.save("response.mp3")
79
 
80
+ print("Formatted History: ", formatted_history)
 
81
 
82
+ # Return the full conversation history
83
+ return "response.mp3", formatted_history
84
 
85
+ with gr.Blocks() as demo:
86
+ gr.HTML("<center><h1>Friday: AI Virtual Assistant πŸ€–</h1><center>")
 
87
 
88
  with gr.Row():
89
  audio_input = gr.Audio(label="Human", sources="microphone")
 
94
  # Textbox to display the full conversation history
95
  transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
96
 
97
+ transcribe_btn.click(fn=transcribe, inputs=[audio_input, transcription_box], outputs=[output_audio, transcription_box])
 
 
 
 
 
98
 
99
  if __name__ == "__main__":
100
  demo.queue()
101
+ demo.launch()