Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,9 @@ LLM_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
13 |
# Initial system prompt
|
14 |
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
|
15 |
|
16 |
-
# Global variables for
|
17 |
-
|
18 |
-
|
19 |
|
20 |
# Create inference client for text generation
|
21 |
client = InferenceClient(LLM_MODEL_NAME)
|
@@ -51,7 +51,9 @@ def generate(instruct_history, temperature=0.1, max_new_tokens=128, top_p=0.95,
|
|
51 |
return output
|
52 |
|
53 |
@spaces.GPU(duration=60)
|
54 |
-
def transcribe(audio,
|
|
|
|
|
55 |
sr, y = audio
|
56 |
y = y.astype(np.float32)
|
57 |
y /= np.max(np.abs(y))
|
@@ -60,7 +62,8 @@ def transcribe(audio, instruct_history, formatted_history):
|
|
60 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
61 |
|
62 |
# Append user input to history
|
63 |
-
formatted_history +=
|
|
|
64 |
instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
|
65 |
|
66 |
# Generate LLM response
|
@@ -68,21 +71,19 @@ def transcribe(audio, instruct_history, formatted_history):
|
|
68 |
|
69 |
# Append AI response to history
|
70 |
instruct_history += f" {llm_response}</s>"
|
71 |
-
formatted_history += f"Friday: {llm_response}\n\n"
|
72 |
|
73 |
# Convert AI response to audio
|
74 |
audio_response = gTTS(llm_response)
|
75 |
audio_response.save("response.mp3")
|
76 |
|
77 |
-
|
78 |
-
return "response.mp3", formatted_history, instruct_history
|
79 |
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
formatted_state = gr.State(value=initial_formatted_history)
|
86 |
|
87 |
with gr.Row():
|
88 |
audio_input = gr.Audio(label="Human", sources="microphone")
|
@@ -93,13 +94,8 @@ with gr.Blocks() as demo:
|
|
93 |
# Textbox to display the full conversation history
|
94 |
transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
|
95 |
|
96 |
-
|
97 |
-
transcribe_btn.click(
|
98 |
-
fn=transcribe,
|
99 |
-
inputs=[audio_input, instruct_state, formatted_state],
|
100 |
-
outputs=[output_audio, transcription_box, instruct_state, formatted_state]
|
101 |
-
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
demo.queue()
|
105 |
-
demo.launch()
|
|
|
13 |
# Initial system prompt
|
14 |
system_prompt = """"<s>[INST] You are Friday, a helpful and conversational AI assistant, and you respond with one to two sentences. [/INST] Hello there! I'm Friday, how can I help you?</s>"""
|
15 |
|
16 |
+
# Global variables for history
|
17 |
+
instruct_history = system_prompt
|
18 |
+
formatted_history = ""
|
19 |
|
20 |
# Create inference client for text generation
|
21 |
client = InferenceClient(LLM_MODEL_NAME)
|
|
|
51 |
return output
|
52 |
|
53 |
@spaces.GPU(duration=60)
|
54 |
+
def transcribe(audio, past_history):
|
55 |
+
global instruct_history, formatted_history
|
56 |
+
|
57 |
sr, y = audio
|
58 |
y = y.astype(np.float32)
|
59 |
y /= np.max(np.abs(y))
|
|
|
62 |
transcribed_user_audio = pipe({"sampling_rate": sr, "raw": y})["text"]
|
63 |
|
64 |
# Append user input to history
|
65 |
+
formatted_history += past_history
|
66 |
+
formatted_history += f"π Human: {transcribed_user_audio}\n\n"
|
67 |
instruct_history += f"<s>[INST] {transcribed_user_audio} [/INST] "
|
68 |
|
69 |
# Generate LLM response
|
|
|
71 |
|
72 |
# Append AI response to history
|
73 |
instruct_history += f" {llm_response}</s>"
|
74 |
+
formatted_history += f"π€ Friday: {llm_response}\n\n"
|
75 |
|
76 |
# Convert AI response to audio
|
77 |
audio_response = gTTS(llm_response)
|
78 |
audio_response.save("response.mp3")
|
79 |
|
80 |
+
print("Formatted History: ", formatted_history)
|
|
|
81 |
|
82 |
+
# Return the full conversation history
|
83 |
+
return "response.mp3", formatted_history
|
84 |
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
gr.HTML("<center><h1>Friday: AI Virtual Assistant π€</h1><center>")
|
|
|
87 |
|
88 |
with gr.Row():
|
89 |
audio_input = gr.Audio(label="Human", sources="microphone")
|
|
|
94 |
# Textbox to display the full conversation history
|
95 |
transcription_box = gr.Textbox(label="Transcription", lines=10, placeholder="Conversation History...")
|
96 |
|
97 |
+
transcribe_btn.click(fn=transcribe, inputs=[audio_input, transcription_box], outputs=[output_audio, transcription_box])
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
demo.queue()
|
101 |
+
demo.launch()
|