File size: 3,964 Bytes
2f4182d
482dea9
2f4182d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482dea9
2f4182d
 
 
 
482dea9
2f4182d
 
 
 
 
 
482dea9
2f4182d
 
 
 
482dea9
2f4182d
 
 
482dea9
2f4182d
 
482dea9
2f4182d
 
482dea9
2f4182d
 
482dea9
2f4182d
 
 
482dea9
2f4182d
 
 
 
 
482dea9
2f4182d
 
 
 
 
 
 
 
 
 
 
 
 
482dea9
2f4182d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
import cv2

# Load the model
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
net.eval()

def resize_image(image):
    image = image.convert('RGB')
    model_input_size = (1024, 1024)
    image = image.resize(model_input_size, Image.BILINEAR)
    return image

def process_image(image):
    # prepare input
    orig_image = Image.fromarray(image)
    w, h = orig_im_size = orig_image.size
    image = resize_image(orig_image)
    im_np = np.array(image)
    im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
    im_tensor = torch.unsqueeze(im_tensor, 0)
    im_tensor = torch.divide(im_tensor, 255.0)
    im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
    if torch.cuda.is_available():
        im_tensor = im_tensor.cuda()

    # inference
    result = net(im_tensor)
    # post process
    result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
    ma = torch.max(result)
    mi = torch.min(result)
    result = (result - mi) / (ma - mi)
    # image to pil
    result_array = (result * 255).cpu().data.numpy().astype(np.uint8)
    pil_mask = Image.fromarray(np.squeeze(result_array))
    # add the mask on the original image as alpha channel
    new_im = orig_image.copy()
    new_im.putalpha(pil_mask)
    return new_im

def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise ValueError("Error opening video file")

    # Get video properties
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter('output.mp4', fourcc, fps, (width, height), isColor=True)

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # Convert frame to PIL Image
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        pil_image = Image.fromarray(frame)

        # Process the frame
        processed_image = process_image(frame)

        # Convert back to OpenCV format
        processed_frame = cv2.cvtColor(np.array(processed_image), cv2.COLOR_RGBA2BGRA)

        # Write the frame to the output video
        out.write(processed_frame)

    cap.release()
    out.release()
    return 'output.mp4'

def process_input(input_data):
    if isinstance(input_data, str):  # Assuming video path is provided as a string
        return process_video(input_data)
    else:  # Assuming image is provided as numpy array
        return process_image(input_data)

gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
  <p style="margin-bottom: 10px; font-size: 94%">
    This is a demo for BRIA RMBG 1.4 that using
    <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
  </p>
''')
title = "Background Removal"
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> 
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>. To purchase a commercial license, simply click <a href='https://go.bria.ai/3ZCBTLH' target='_blank'><b>Here</b></a>. <br>
"""
examples = [['./input.jpg'],]
demo = gr.Interface(fn=process_input, inputs="file", outputs="playable_video", examples=examples, title=title, description=description)

if __name__ == "__main__":
    demo.launch(share=False)