Spaces:
Sleeping
Sleeping
from data.load_dataset import load_data | |
from retriever.chunk_documents import chunk_documents | |
from retriever.embed_documents import embed_documents | |
from retriever.retrieve_documents import retrieve_top_k_documents | |
from generator.initialize_llm import initialize_llm | |
from generator.generate_response import generate_response | |
def main(): | |
# Load the dataset | |
dataset = load_data() | |
# Chunk the dataset | |
documents = chunk_documents(dataset) | |
# Embed the documents | |
vector_store = embed_documents(documents) | |
# Initialize the LLM | |
llm = initialize_llm() | |
# Sample question | |
sample_question = dataset[0]['question'] | |
# Retrieve relevant documents | |
relevant_docs = retrieve_top_k_documents(vector_store, sample_question, top_k=5) | |
# Generate a response | |
response, source_docs = generate_response(llm, vector_store, sample_question) | |
# Print the response | |
print(f"Response: {response}") | |
print(f"Source Documents: {source_docs}") | |
if __name__ == "__main__": | |
main() |