|
[Better Fine-Tuning by Reducing Representational Collapse](https://arxiv.org/abs/2008.03156) |
|
===================== |
|
This repo contains the code to replicate all experiments from the _Better Fine-Tuning by Reducing Representational Collapse_ paper excluding the probing results. |
|
|
|
The R3F sentence prediction criterion is registered as `sentence_prediction_r3f` while the label smoothing version of it is implemented as `label_smoothed_cross_entropy_r3f`. The R4F version of the sentence prediction criterion can be achieved by applying spectral norm to the classification head via the `--spectral-norm-classification-head` parameter. |
|
|
|
## Hyper-parameters |
|
Our methods introduce 3 new hyper-parameters; `--eps` which sets the standard deviation or range of the distribution we're sampling from, `--r3f-lambda` which controls the combining of logistic loss and noisy KL loss and `--noise-type` which controls which parametric distribution we use ('normal', 'uniform'). |
|
|
|
For example to run R3F on RTE from GLUE |
|
|
|
``` |
|
TOTAL_NUM_UPDATES=3120 |
|
WARMUP_UPDATES=187 |
|
LR=1e-05 |
|
NUM_CLASSES=2 |
|
MAX_SENTENCES=8 # Batch size. |
|
ROBERTA_PATH=/path/to/roberta/model.pt |
|
|
|
CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin \ |
|
--restore-file $ROBERTA_PATH \ |
|
--max-positions 512 \ |
|
--max-sentences $MAX_SENTENCES \ |
|
--max-tokens 4400 \ |
|
--task sentence_prediction \ |
|
--reset-optimizer --reset-dataloader --reset-meters \ |
|
--required-batch-size-multiple 1 \ |
|
--init-token 0 --separator-token 2 \ |
|
--arch roberta_large \ |
|
--criterion sentence_prediction_r3f \ |
|
--num-classes $NUM_CLASSES \ |
|
--dropout 0.1 --attention-dropout 0.1 \ |
|
--weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ |
|
--clip-norm 0.0 \ |
|
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ |
|
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ |
|
--max-epoch 10 \ |
|
--find-unused-parameters \ |
|
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ |
|
--noise-type uniform --r3f-lambda 0.7 \ |
|
--user-dir examples/rxf/rxf_src |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{aghajanyan2020better, |
|
title={Better Fine-Tuning by Reducing Representational Collapse}, |
|
author={Aghajanyan, Armen and Shrivastava, Akshat and Gupta, Anchit and Goyal, Naman and Zettlemoyer, Luke and Gupta, Sonal}, |
|
journal={arXiv preprint arXiv:2008.03156}, |
|
year={2020} |
|
} |
|
``` |
|
|