|
from pathlib import Path |
|
from typing import BinaryIO, Optional, Tuple, Union, List |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} |
|
FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"} |
|
|
|
|
|
def _convert_to_mono( |
|
waveform: torch.FloatTensor, sample_rate: int |
|
) -> torch.FloatTensor: |
|
if waveform.shape[0] > 1: |
|
try: |
|
import torchaudio.sox_effects as ta_sox |
|
except ImportError: |
|
raise ImportError( |
|
"Please install torchaudio to convert multi-channel audios" |
|
) |
|
effects = [['channels', '1']] |
|
return ta_sox.apply_effects_tensor(waveform, sample_rate, effects)[0] |
|
return waveform |
|
|
|
|
|
def convert_to_mono(waveform: np.ndarray, sample_rate: int) -> np.ndarray: |
|
if waveform.shape[0] > 1: |
|
_waveform = torch.from_numpy(waveform) |
|
return _convert_to_mono(_waveform, sample_rate).numpy() |
|
return waveform |
|
|
|
|
|
def get_waveform( |
|
path_or_fp: Union[str, BinaryIO], normalization=True, mono=True, |
|
frames=-1, start=0, always_2d=True |
|
) -> Tuple[np.ndarray, int]: |
|
"""Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. |
|
|
|
Args: |
|
path_or_fp (str or BinaryIO): the path or file-like object |
|
normalization (bool): Normalize values to [-1, 1] (Default: True) |
|
mono (bool): convert multi-channel audio to mono-channel one |
|
frames (int): the number of frames to read. (-1 for reading all) |
|
start (int): Where to start reading. A negative value counts from the end. |
|
always_2d (bool): always return 2D array even for mono-channel audios |
|
Returns: |
|
waveform (numpy.ndarray): 1D or 2D waveform (channels x length) |
|
sample_rate (float): sample rate |
|
""" |
|
if isinstance(path_or_fp, str): |
|
ext = Path(path_or_fp).suffix |
|
if ext not in SF_AUDIO_FILE_EXTENSIONS: |
|
raise ValueError(f"Unsupported audio format: {ext}") |
|
|
|
try: |
|
import soundfile as sf |
|
except ImportError: |
|
raise ImportError( |
|
"Please install soundfile to load WAV/FLAC/OGG Vorbis audios" |
|
) |
|
|
|
waveform, sample_rate = sf.read( |
|
path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start |
|
) |
|
waveform = waveform.T |
|
if mono and waveform.shape[0] > 1: |
|
waveform = convert_to_mono(waveform, sample_rate) |
|
if not normalization: |
|
waveform *= 2 ** 15 |
|
if not always_2d: |
|
waveform = waveform.squeeze(axis=0) |
|
return waveform, sample_rate |
|
|
|
|
|
def _get_kaldi_fbank( |
|
waveform: np.ndarray, sample_rate: int, n_bins=80 |
|
) -> Optional[np.ndarray]: |
|
"""Get mel-filter bank features via PyKaldi.""" |
|
try: |
|
from kaldi.feat.mel import MelBanksOptions |
|
from kaldi.feat.fbank import FbankOptions, Fbank |
|
from kaldi.feat.window import FrameExtractionOptions |
|
from kaldi.matrix import Vector |
|
|
|
mel_opts = MelBanksOptions() |
|
mel_opts.num_bins = n_bins |
|
frame_opts = FrameExtractionOptions() |
|
frame_opts.samp_freq = sample_rate |
|
opts = FbankOptions() |
|
opts.mel_opts = mel_opts |
|
opts.frame_opts = frame_opts |
|
fbank = Fbank(opts=opts) |
|
features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy() |
|
return features |
|
except ImportError: |
|
return None |
|
|
|
|
|
def _get_torchaudio_fbank( |
|
waveform: np.ndarray, sample_rate, n_bins=80 |
|
) -> Optional[np.ndarray]: |
|
"""Get mel-filter bank features via TorchAudio.""" |
|
try: |
|
import torchaudio.compliance.kaldi as ta_kaldi |
|
waveform = torch.from_numpy(waveform) |
|
features = ta_kaldi.fbank( |
|
waveform, num_mel_bins=n_bins, sample_frequency=sample_rate |
|
) |
|
return features.numpy() |
|
except ImportError: |
|
return None |
|
|
|
|
|
def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray: |
|
"""Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi |
|
(faster CPP implementation) to TorchAudio (Python implementation). Note that |
|
Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the |
|
waveform should not be normalized.""" |
|
waveform, sample_rate = get_waveform(path_or_fp, normalization=False) |
|
|
|
features = _get_kaldi_fbank(waveform, sample_rate, n_bins) |
|
if features is None: |
|
features = _get_torchaudio_fbank(waveform, sample_rate, n_bins) |
|
if features is None: |
|
raise ImportError( |
|
"Please install pyKaldi or torchaudio to enable " |
|
"online filterbank feature extraction" |
|
) |
|
|
|
return features |
|
|
|
|
|
def is_npy_data(data: bytes) -> bool: |
|
return data[0] == 147 and data[1] == 78 |
|
|
|
|
|
def is_sf_audio_data(data: bytes) -> bool: |
|
is_wav = (data[0] == 82 and data[1] == 73 and data[2] == 70) |
|
is_flac = (data[0] == 102 and data[1] == 76 and data[2] == 97) |
|
is_ogg = (data[0] == 79 and data[1] == 103 and data[2] == 103) |
|
return is_wav or is_flac or is_ogg |
|
|
|
|
|
def read_from_stored_zip(zip_path: str, offset: int, file_size: int) -> bytes: |
|
with open(zip_path, "rb") as f: |
|
f.seek(offset) |
|
data = f.read(file_size) |
|
return data |
|
|
|
|
|
def parse_path(path: str) -> Tuple[str, List[int]]: |
|
"""Parse data path which is either a path to |
|
1. a .npy/.wav/.flac/.ogg file |
|
2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" |
|
|
|
Args: |
|
path (str): the data path to parse |
|
|
|
Returns: |
|
file_path (str): the file path |
|
slice_ptr (list of int): empty in case 1; |
|
byte offset and length for the slice in case 2 |
|
""" |
|
|
|
if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: |
|
_path, slice_ptr = path, [] |
|
else: |
|
_path, *slice_ptr = path.split(":") |
|
if not Path(_path).is_file(): |
|
raise FileNotFoundError(f"File not found: {_path}") |
|
assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" |
|
slice_ptr = [int(i) for i in slice_ptr] |
|
return _path, slice_ptr |
|
|