aliabd
full working demo
d5175d3
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import math
import re
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from fairseq.models import (
FairseqEncoder,
)
from fairseq.models.speech_to_text.utils import (
NoOp,
lengths_to_padding_mask,
segments_to_sequence,
)
from fairseq.models.speech_to_text.utils import (
attention_suppression,
layer_norm_backward_hook,
)
from torch import Tensor, device as Device
from torch.quantization.qconfig import (
default_dynamic_qconfig,
per_channel_dynamic_qconfig,
)
class RelativePositionEmbedding(nn.Module):
"""
Implementation according to https://arxiv.org/abs/1803.02155
"""
def __init__(self, head_dim, max_position, norm_init=True):
super().__init__()
self.head_dim = head_dim
self.max_position = max_position
self.embeddings = nn.Parameter(torch.Tensor(max_position * 2 + 1, head_dim))
if norm_init:
nn.init.xavier_normal_(self.embeddings)
else:
nn.init.xavier_uniform_(self.embeddings)
def forward(self, input: Tensor):
output = nn.functional.embedding(input.long(), self.embeddings)
return output
class Fp32LayerNorm(nn.Module):
def __init__(
self,
input_dim,
clamp_grad=True,
max_grad_value=256,
eps=1e-5,
elementwise_affine=True,
):
super().__init__()
self.torch_module = torch.nn.LayerNorm(
input_dim, eps=eps, elementwise_affine=elementwise_affine
)
if clamp_grad:
hook = partial(layer_norm_backward_hook, clamp_value=max_grad_value)
self.torch_module.register_backward_hook(hook)
def forward(self, input):
output = torch.nn.functional.layer_norm(
input.float(),
self.torch_module.normalized_shape,
self.torch_module.weight.float()
if self.torch_module.weight is not None
else None,
self.torch_module.bias.float()
if self.torch_module.bias is not None
else None,
self.torch_module.eps,
).type_as(input)
return output
# ------------------------------------------------------------------------------
# PositionwiseFF
# ------------------------------------------------------------------------------
class PositionwiseFF(nn.Module):
"""
FFN layer in transformer.
Args:
input_dim: input embedding dimension
ffn_dim: FFN layer inner dimension
dropout_on_fc1: dropout for first linear layer
dropout_on_fc2: dropout fr second linear layer
activation_fn: activation function used after first linear layer. \
Only relu or gelu is supported.
"""
def __init__(
self, input_dim, ffn_dim, dropout_on_fc1, dropout_on_fc2, activation_fn
):
super(PositionwiseFF, self).__init__()
self.input_dim = input_dim
self.ffn_dim = ffn_dim
if activation_fn == "relu":
ac = nn.ReLU()
elif activation_fn == "gelu":
ac = nn.GELU()
else:
raise ValueError("Unsupported activation_fn = ({})".format(activation_fn))
# fc1 -> ac -> dropout -> fc2 -> dropout
self.module = nn.Sequential(
nn.Linear(input_dim, ffn_dim),
ac,
nn.Dropout(dropout_on_fc1),
nn.Linear(ffn_dim, input_dim),
nn.Dropout(dropout_on_fc2),
)
self.layer_norm = Fp32LayerNorm(input_dim)
def forward(self, input):
module_out = self.module(self.layer_norm(input))
output = module_out + input
return output
def quantize_(self, params=None):
if params and "per_channel" in params and params["per_channel"]:
qconfig = per_channel_dynamic_qconfig
else:
qconfig = default_dynamic_qconfig
torch.quantization.quantize_dynamic(
self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
)
return self
# ------------------------------------------------------------------------------
# SummarizationLayer
# ------------------------------------------------------------------------------
class SummarizationLayer(nn.Module):
def __init__(self, method, segment_size, embedding_dim):
super(SummarizationLayer, self).__init__()
self.segment_size = segment_size
self.embedding_dim = embedding_dim
nonlin_match = re.match(r"nonlinear\((?P<act>[a-z]+),(?P<dim>[0-9]+)\)", method)
self.method = method
if method == "mean":
self.module = nn.AvgPool1d(
kernel_size=segment_size,
stride=segment_size,
ceil_mode=True,
)
elif method == "max":
self.module = nn.MaxPool1d(
kernel_size=segment_size,
stride=segment_size,
ceil_mode=True,
)
elif method == "linear":
self.module = nn.Linear(segment_size, 1)
elif nonlin_match:
nonlin_args = nonlin_match.groupdict()
act_type = nonlin_args["act"]
hid_dim = int(nonlin_args["dim"])
if act_type == "relu":
act = nn.ReLU()
elif act_type == "gelu":
act = nn.GELU()
else:
raise ValueError("Unsupported activation_fn = ({})".format(act_type))
self.module = nn.Sequential(
nn.Linear(segment_size, hid_dim),
act,
nn.Linear(hid_dim, 1),
)
else:
raise ValueError("Unsupported summarization method = ({})".format(method))
def forward(self, input):
# T, B, D -> B, D, T
input = input.permute(1, 2, 0)
if self.method == "mean" or self.method == "max":
output = self.module(input)
output = output.permute(2, 0, 1)
return output
full_seg_length = input.size(2) // self.segment_size * self.segment_size
if full_seg_length > 0:
# at least one seg is full
B = input.size(0)
D = input.size(1)
input_todo = (
input[:, :, :full_seg_length]
.contiguous()
.view(B, -1, self.segment_size)
)
output = self.module(input_todo)
output = output.view(B, D, -1)
else:
output = input.new_zeros(input.size(0), input.size(1), 0)
left = input.size(2) - full_seg_length
if left > 0:
# when last seg is not full, use zeros as last memory placeholder
zeros = input.new_zeros(input.size(0), input.size(1), 1)
output = torch.cat([output, zeros], dim=2)
output = output.permute(2, 0, 1)
return output
# ------------------------------------------------------------------------------
# NoSegAugmentedMemoryMultiheadAttentionBmm
# ------------------------------------------------------------------------------
class NoSegAugmentedMemoryMultiheadAttentionBmm(nn.Module):
"""
Whole utterance augmented memory multihead attention using BMM.
Different with previous augmented memory multihead attention where
the utterance is chunked into segments. Here we use attention mask
achieve so. The input embedding [right_context, utterance, summary]
is a concatenation of right context, utterance and summary.
Right context block is the concatenation of all the right context for
each segments. [right_context_0, right_context_1, ..., right_context_n]
For example, if we have utterance = [v0, v1, v2, ...., v20]. segment
size 8, right_context size 4. Then the right context blocks =
[v8, v9, v10, v11, v16, v17, v18, v19, 0, 0, 0, 0], where v8, v9, v10,
and v11 are the right context for first segment. v16, v17, v18 and v19
are the right context for second segment. 0, 0, 0 and 0 are right context
for the last segment.
utterance is corresponding to input embedding sequence
summary is concatenation of average of each segments. [summary_0,
summary_1, ..., ].
In augmented memory multihead attention, the query is [right_context,
utterance, summary], key is [memory, right_context, utterance]. Different
with AugmentedMemoryMultiheadAttentionBmm, memory here is passed from
previous attention layer. For the first attention layer, memory is average
of each segment.
Memory is a concatenation of memory from each segments in previous attention
layer. For example, current layer is i, then memory is [m_0, m_1, ..., m_n].
Each m_k is the output from seg_k in layer i-1.
args:
input_dim: input embedding dimension
num_heads: number of heads in multihead self-attention
dropout: attention dropout
std_scale: if std_scale is not None. The weak attention suppression is
turned on. For std_scale = 0.5, all the attention smaller than
mean + 0.5 * std will be suppressed.
scaled_init: whether to use scaled init for linear weight
tanh_on_mem: whether to use tanh on memory output
use_mem: whether to use memory or not. When max_memory_size is 0, then
we don't have memory anymore.
layer_index: current self-attention layer index that is used in depth
initialization
max_relative_position: max relative position used in relative position
embedding
rpe_old_option: To be compatible with previous model. The previous model
was trained with attention += attention + rpe. The correct equation
should be attention = attention + rpe
"""
def __init__(
self,
input_dim,
num_heads,
dropout=0.0,
std_scale=None,
scaled_init=False,
tanh_on_mem=False,
use_mem=True,
mini_batches=False,
negative_inf="-inf",
layer_index=-1,
max_relative_position=0,
rpe_old_option=True,
):
if input_dim % num_heads:
raise ValueError(
"input_dim ({}) must be divisible by num_heads ({})".format(
input_dim, num_heads
)
)
super().__init__()
embed_dim = input_dim
self.e2h_kv = torch.nn.Linear(input_dim, 2 * input_dim, bias=True)
self.e2h_q = torch.nn.Linear(input_dim, input_dim, bias=True)
self.rpe_old_option = rpe_old_option
if max_relative_position > 0:
self.use_rpe = True
self.rpe_k = RelativePositionEmbedding(
head_dim=input_dim // num_heads,
max_position=max_relative_position,
)
self.rpe_v = RelativePositionEmbedding(
head_dim=input_dim // num_heads,
max_position=max_relative_position,
)
else:
self.use_rpe = False
self.rpe_k = None
self.rpe_v = None
if scaled_init:
if layer_index == -1:
gain = 1.0 / math.sqrt(2)
else:
# https://arxiv.org/abs/2005.09684 depthwise initialization
# stablize the training greatly. Use depthwise initialization to
# replace incremental loss.
gain = 1.0 / math.sqrt(layer_index + 1)
torch.nn.init.xavier_uniform_(self.e2h_kv.weight, gain=gain)
torch.nn.init.xavier_uniform_(self.e2h_q.weight, gain=gain)
self.out_proj = torch.nn.Linear(embed_dim, embed_dim, bias=True)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.scaling = self.head_dim ** -0.5
self.std_scale = std_scale
self.use_mem = use_mem
self.mini_batches = mini_batches
self.negative_inf = negative_inf
if tanh_on_mem:
self.squash_mem = torch.tanh
self.nonlinear_squash_mem = True
else:
self.squash_mem = NoOp()
self.nonlinear_squash_mem = False
def prepare_qkv(
self,
input: Tensor,
mems: Tensor,
lengths: Tensor,
summary_length: int,
lc_length: int,
):
# T: right_context length + utterance_length + summary_length
T, B, D = input.shape
mem_length = mems.size(0)
utterance_length = torch.max(lengths)
right_context_blocks_length = T - utterance_length - summary_length
rc_block = input[:right_context_blocks_length, :, :]
utterance_block = input[right_context_blocks_length : T - summary_length, :, :]
if B == 1:
padding_mask = None
else:
klengths = lengths + mem_length + right_context_blocks_length + lc_length
padding_mask = lengths_to_padding_mask(lengths=klengths)
mem_rc_input = torch.cat([mems, rc_block, utterance_block], dim=0)
# In training lc_length = 0
key_length = mem_rc_input.size(0) + lc_length
rc_input_sum = input
q = self.e2h_q(rc_input_sum)
kv = self.e2h_kv(mem_rc_input)
k, v = kv.chunk(chunks=2, dim=2)
result_qkv = (q, k, v)
input_shape = (T, B, D)
result_lengths_info = (
mem_length,
utterance_length,
right_context_blocks_length,
key_length,
)
if padding_mask is not None:
assert padding_mask.size(0) == B
assert padding_mask.size(1) == key_length
return result_qkv, input_shape, result_lengths_info, padding_mask
def prepare_attention_weights(
self,
q: Tensor,
new_k: Tensor,
new_v: Tensor,
input_shape: Tuple[int, int, int],
rpe: Optional[Tensor],
) -> Tuple[Tensor, Tensor, Tensor]:
T, B, D = input_shape
q = (
q.contiguous().view(-1, B * self.num_heads, self.head_dim).transpose(0, 1)
* self.scaling
)
k = (
new_k.contiguous()
.view(-1, B * self.num_heads, self.head_dim)
.transpose(0, 1)
)
v = (
new_v.contiguous()
.view(-1, B * self.num_heads, self.head_dim)
.transpose(0, 1)
)
attention_weights = torch.bmm(q, k.transpose(1, 2))
if self.use_rpe and rpe is not None and self.rpe_v is not None:
r_k = self.rpe_k(rpe)
# [q, B*h, d] * [q, k, d] -> [B*h, q, k]
attention_weights_rpe = torch.matmul(
q.transpose(0, 1), r_k.transpose(1, 2)
).transpose(0, 1)
attention_weights = attention_weights + attention_weights_rpe
attention_weights_float = attention_weights.float()
return attention_weights, attention_weights_float, v
def prepare_attention_output(
self,
attention_weights: Tensor,
attention_weights_float: Tensor,
v: Tensor,
input_shape: Tuple[int, int, int],
key_length: int,
padding_mask: Optional[Tensor],
rpe: Optional[Tensor],
) -> Tensor:
T, B, D = input_shape
if padding_mask is not None:
attention_weights_float = attention_weights_float.view(
B, self.num_heads, T, key_length
)
attention_weights_float = attention_weights_float.masked_fill(
padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
)
attention_weights_float = attention_weights_float.view(
B * self.num_heads, T, key_length
)
if self.std_scale is not None:
attention_weights_float = attention_suppression(
attention_weights_float, self.std_scale
)
attention_weights_float = torch.nn.functional.softmax(
attention_weights_float, dim=-1
)
attention_weights = attention_weights_float.type_as(attention_weights)
attention_probs = torch.nn.functional.dropout(
attention_weights, p=self.dropout, training=self.training
)
# [T, key_length, B, n_head]+ [key_length, B, n_head, d_head]
# -> [T, B, n_head, d_head]
attention = torch.bmm(attention_probs, v)
if self.use_rpe and rpe is not None and self.rpe_v is not None:
r_v = self.rpe_v(rpe)
attention_rpe = torch.matmul(
attention_probs.transpose(0, 1), r_v
).transpose(0, 1)
if self.rpe_old_option:
attention += attention + attention_rpe
else:
attention = attention + attention_rpe
assert list(attention.shape) == [B * self.num_heads, T, self.head_dim]
attention = attention.transpose(0, 1).contiguous().view(T, B, self.embed_dim)
rc_output_memory = self.out_proj(attention)
return rc_output_memory
@torch.jit.unused
def forward(
self,
input: Tensor,
lengths: Tensor,
mems: Tensor,
attention_mask: Tensor,
pre_mems: Optional[Tensor] = None,
left_context_key: Optional[Tensor] = None,
left_context_val: Optional[Tensor] = None,
rpe: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""
forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in training.
args:
input: formed in the following way
[right_context_0, right_contex_1, ..., seg_0, seg_1,
..., summary_0, summary_1,..]
lengths: the length of query which is [seg_0, seg_1, ....]
mems: [mem_0, mem_1, ...].
attention_mask: attention mask for query = [right_context, query, summary]
key = [mem, right_context, query]. This is only used for traing.
"""
if self.use_mem:
mem_length = mems.size(0)
summary_length = mem_length + 1
if pre_mems is not None:
mems = torch.cat([pre_mems, mems], dim=0)
else:
mem_length = 0
summary_length = 0
# In training, lc_length = 0
if left_context_key is not None:
lc_length = left_context_key.size(0)
else:
lc_length = 0
results = self.prepare_qkv(
input=input,
mems=mems,
lengths=lengths,
summary_length=summary_length,
lc_length=lc_length,
)
result_qkv, input_shape, result_lengths_info, padding_mask = results
q, k, v = result_qkv
(
mem_length,
utterance_length,
right_context_blocks_length,
key_length,
) = result_lengths_info
if left_context_key is not None:
# add the cache key and value
new_k = torch.cat(
[
k[: mem_length + right_context_blocks_length, :, :],
left_context_key,
k[-utterance_length:, :, :],
],
dim=0,
)
new_v = torch.cat(
[
v[: mem_length + right_context_blocks_length, :, :],
left_context_val,
v[-utterance_length:, :, :],
],
dim=0,
)
next_k = new_k[mem_length + right_context_blocks_length :, :, :]
next_v = new_v[mem_length + right_context_blocks_length :, :, :]
else:
new_k = k
new_v = v
next_k = None
next_v = None
attention_weights, attention_weights_float, v = self.prepare_attention_weights(
q=q,
new_k=new_k,
new_v=new_v,
input_shape=input_shape,
rpe=rpe,
)
# mask attention
attention_mask = attention_mask.unsqueeze(0)
attention_weights_float = attention_weights_float.masked_fill(
attention_mask, float(self.negative_inf)
)
rc_output_memory = self.prepare_attention_output(
attention_weights=attention_weights,
attention_weights_float=attention_weights_float,
v=v,
input_shape=input_shape,
key_length=key_length,
padding_mask=padding_mask,
rpe=rpe,
)
if self.use_mem:
# next_m length equals to summary length - 1
# last memory is ignored
if self.mini_batches:
next_m = rc_output_memory[-summary_length:]
else:
next_m = rc_output_memory[-summary_length:-1]
next_m = self.squash_mem(next_m)
# rc and output
rc_output = rc_output_memory[:-summary_length]
if not self.nonlinear_squash_mem:
next_m = torch.clamp(next_m, min=-10, max=10)
else:
next_m = mems
rc_output = rc_output_memory
return rc_output, next_m, next_k, next_v
@torch.jit.export
def forward_jit(
self,
input: Tensor,
lengths: Tensor,
mems: Tensor,
left_context_key: Tensor,
left_context_val: Tensor,
rpe: Optional[Tensor],
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""
forward function for NoSegAugmentedMemoryMultiheadAttentionBmm in decoding.
args:
input: formed in the following way
[right_context_0, right_contex_1, ..., seg_0, seg_1,
..., summary_0, summary_1,..]
lengths: the length of query which is [seg_0, seg_1, ....]
mems: [mem_0, mem_1, ...].
left_context_key: left_context for key part. This is only used for online
decoding. In training, this is empty tensor
left_context_val: left_context for value part. This is only used for online
decoding. In training, this is empty tensor
"""
lc_length = left_context_key.size(0)
# In decoding, summary_length = 1 or 0
if self.use_mem:
summary_length = 1
else:
summary_length = 0
results = self.prepare_qkv(
input=input,
mems=mems,
lengths=lengths,
summary_length=summary_length,
lc_length=lc_length,
)
result_qkv, input_shape, result_lengths_info, padding_mask = results
q, k, v = result_qkv
(
mem_length,
utterance_length,
right_context_blocks_length,
key_length,
) = result_lengths_info
# add the cache key and value
new_k = torch.cat(
[
k[: mem_length + right_context_blocks_length, :, :],
left_context_key,
k[-utterance_length:, :, :],
],
dim=0,
)
new_v = torch.cat(
[
v[: mem_length + right_context_blocks_length, :, :],
left_context_val,
v[-utterance_length:, :, :],
],
dim=0,
)
next_k = new_k[mem_length + right_context_blocks_length :, :, :]
next_v = new_v[mem_length + right_context_blocks_length :, :, :]
attention_weights, attention_weights_float, v = self.prepare_attention_weights(
q=q,
new_k=new_k,
new_v=new_v,
input_shape=input_shape,
rpe=rpe,
)
# In online decoding, we don't have attention mask. But we still need
# to disable the attention from summary query to memory
attention_weights_float[:, -1, :mem_length] = float(self.negative_inf)
rc_output_memory = self.prepare_attention_output(
attention_weights=attention_weights,
attention_weights_float=attention_weights_float,
v=v,
input_shape=input_shape,
key_length=key_length,
padding_mask=padding_mask,
rpe=rpe,
)
# In decoding, summary length is 1
if self.use_mem:
next_m = rc_output_memory[-1:]
next_m = self.squash_mem(next_m)
# rc and output
rc_output = rc_output_memory[:-1]
if not self.nonlinear_squash_mem:
next_m = torch.clamp(next_m, min=-10, max=10)
else:
rc_output = rc_output_memory
# empty tensor as input mems
next_m = mems
return rc_output, next_m, next_k, next_v
def quantize_(self, params=None):
if params and "per_channel" in params and params["per_channel"]:
qconfig = per_channel_dynamic_qconfig
else:
qconfig = default_dynamic_qconfig
torch.quantization.quantize_dynamic(
self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
)
return self
class NoSegAugmentedMemoryTransformer(nn.Module):
"""
Whole utterance augmented memory transformer.
This is not pyspeech nn layer. It is used as a module in a master layer where
multiple transformers is used.
"""
def __init__(
self,
input_dim,
num_heads,
ffn_dim,
dropout_in_attn=0.0,
dropout_on_attn=None,
dropout_on_fc1=None,
dropout_on_fc2=None,
activation_fn="relu",
tanh_on_mem=False,
std_scale=None,
scaled_init=False,
segment_size=128,
use_mem=True,
mini_batches=False,
negative_inf="-inf",
layer_index=-1,
summarization_method="mean",
max_relative_position=0,
rpe_old_option=True,
):
super(NoSegAugmentedMemoryTransformer, self).__init__()
self.attention = NoSegAugmentedMemoryMultiheadAttentionBmm(
input_dim=input_dim,
num_heads=num_heads,
dropout=dropout_in_attn,
scaled_init=scaled_init,
tanh_on_mem=tanh_on_mem,
std_scale=std_scale,
use_mem=use_mem,
mini_batches=mini_batches,
negative_inf=negative_inf,
layer_index=layer_index,
max_relative_position=max_relative_position,
)
self.dropout = nn.Dropout(dropout_on_attn)
self.pos_ff = PositionwiseFF(
input_dim=input_dim,
ffn_dim=ffn_dim,
dropout_on_fc1=dropout_on_fc1,
dropout_on_fc2=dropout_on_fc2,
activation_fn=activation_fn,
)
self.layer_norm_pre = Fp32LayerNorm(input_dim)
self.layer_norm = Fp32LayerNorm(input_dim)
self.segment_size = segment_size
self.use_mem = use_mem
self.memory_op = SummarizationLayer(
summarization_method, segment_size, input_dim
)
def set_mini_batches(self, mini_batches):
self.attention.mini_batches = mini_batches
def gen_summary_queries(self, input):
sum_input = self.memory_op(input)
return sum_input
def pre_attention_ops(self, input, right_context_blocks):
rc_length = right_context_blocks.size(0)
input_length = input.size(0)
rc_and_input = torch.cat([right_context_blocks, input], dim=0)
residual_input = rc_and_input
rc_and_input = self.layer_norm_pre(rc_and_input)
query_input = rc_and_input[-input_length:, :, :]
return rc_length, input_length, residual_input, query_input, rc_and_input
def after_attention_ops(self, attention_output, residual_input):
output = self.dropout(attention_output)
output = output + residual_input
output = self.pos_ff(output)
output = self.layer_norm(output)
return output
@torch.jit.export
def forward_jit(
self,
input: Tensor,
lengths: Tensor,
mems: Tensor,
left_context_key: Tensor,
left_context_val: Tensor,
right_context_blocks: Tensor,
rpe: Optional[Tensor],
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
results = self.pre_attention_ops(input, right_context_blocks)
rc_length, input_length, residual_input, query_input, rc_and_input = results
# In online decoding, the summary query size is always 1 or 0
if self.use_mem:
summary_query = self.gen_summary_queries(query_input)
summary_query = summary_query[0:1, :, :]
rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0)
else:
rc_qu_su = rc_and_input
rc_output, next_m, next_k, next_v = self.attention.forward_jit(
input=rc_qu_su,
lengths=lengths,
mems=mems,
left_context_key=left_context_key,
left_context_val=left_context_val,
rpe=rpe,
)
rc_output = self.after_attention_ops(rc_output, residual_input)
results = (
rc_output[-input_length:, :, :],
next_m,
rc_output[0:rc_length, :, :],
next_k,
next_v,
)
return results
@torch.jit.unused
def forward(
self,
input,
lengths,
mems,
right_context_blocks,
attention_mask,
pre_mems,
left_context_key,
left_context_val,
rpe,
):
results = self.pre_attention_ops(input, right_context_blocks)
rc_length, input_length, residual_input, query_input, rc_and_input = results
if self.use_mem:
summary_query = self.gen_summary_queries(query_input)
rc_qu_su = torch.cat([rc_and_input, summary_query], dim=0)
else:
rc_qu_su = rc_and_input
rc_output, next_m, next_k, next_v = self.attention(
input=rc_qu_su,
lengths=lengths,
mems=mems,
attention_mask=attention_mask,
pre_mems=pre_mems,
left_context_key=left_context_key,
left_context_val=left_context_val,
rpe=rpe,
)
# [TODO] Note memory did not go through pos_ff. What happen if we pass
# memory through the pos_ff as well?
rc_output = self.after_attention_ops(rc_output, residual_input)
results = (
rc_output[-input_length:, :, :],
next_m,
rc_output[0:rc_length, :, :],
next_k,
next_v,
)
return results
class NoSegAugmentedMemoryTransformerEncoderLayer(FairseqEncoder):
"""
Whole utterance augmented memory transformer encoder layer. This is a master layer
where we can define multiple augmented memory transformers. There are two reasons
to setup the master layer.
1. We only need to define once about the attention mask. All the layers in the master
layer share the same mask.
2. pyspeech nn layer has special input and output format. Defining one master layer is
easier to passing memory between different layes inside the master layer
args:
input_dim: input embedding dimension
num_heads: number of heads in multihead self-attention
ffn_dim: ffn dimension in FFN layer
num_layers: number of augmented memory transformer layers
dropout_in_attn: dropout used in multi-head self-attention
dropout_on_attn: dropout used for output from te multihead self-attention
dropout_on_fc1: dropout used in FFN layer for the first linear layer
dropout_on_fc2: dropout used in FFN layer for the second linear layer
segment_size: segment size for each segment
context_config: (left_context_size, right_context_size) defines the surround context size
for each segment
max_memory_size: maximum memory size used for each segment
scaled_init: whether use scaled init for weight initialization in attention layer
std_scale: if std_scale is not None. The weak attention suppression is
turned on. For std_scale = 0.5, all the attention smaller than
mean + 0.5 * std will be suppressed.
activation_fn: activation function used in FFN layer. [ReLU, GELU] supported
tanh_on_mem: whether use tanh on memory
mini_batches: use mini-btach training
negative_inf: the negative infinity value used in attention masking. default is "-inf".
For some situation, e.g. LM. it is better to use "-1e8" to avoid nan issue.
summarization_method: method to generate segment summrization embedding
max_relative_position: max relatie position for relative position embedding
rpe_old_option: To be compatible with previous model. The previous model
was trained with attention += attention + rpe. The correct equation
should be attention = attention + rpe
[TODO]: remove the rpe_old_option by the end of 2021 Q1.
"""
def __init__(
self,
input_dim,
num_heads,
ffn_dim,
num_layers=1,
dropout_in_attn=0.0,
dropout_on_attn=0.0,
dropout_on_fc1=0.0,
dropout_on_fc2=0.0,
segment_size=128,
context_config=(0, 0),
max_memory_size=0,
scaled_init=True,
std_scale=None,
activation_fn="relu",
tanh_on_mem=False,
mini_batches=False,
negative_inf="-inf",
deep_init=True,
summarization_method="mean",
max_relative_position=0,
rpe_old_option=True,
):
super().__init__(None)
if input_dim % num_heads:
raise ValueError(
"input_dim ({}) must be divisible by num_heads ({})".format(
input_dim, num_heads
)
)
# we used to support growing memory size. However, it will cause
# cross stream batching failure. Now we need to have exact max memory size
if max_memory_size < 0:
raise ValueError("max_memory_size must be >= 0")
# Only assign right_context. In decoding, left context will be cached.
# No need to let the online decoder to re-assign the left context
self.left_context, self.right_context = context_config
self.segment_size = segment_size
self.memory_dim = input_dim
self.max_memory_size = max_memory_size
self.mini_batches = mini_batches
if self.max_memory_size != 0:
self.use_mem = True
else:
self.use_mem = False
self.memory_op = SummarizationLayer(
summarization_method, segment_size, input_dim
)
self.layers = torch.nn.ModuleList()
self.num_layers = num_layers
self.max_relative_position = max_relative_position
if self.max_relative_position > 0:
self.use_rpe = True
else:
self.use_rpe = False
for i in range(self.num_layers):
if deep_init:
layer_index = i
else:
layer_index = -1
self.layers.append(
NoSegAugmentedMemoryTransformer(
num_heads=num_heads,
input_dim=input_dim,
ffn_dim=ffn_dim,
dropout_in_attn=dropout_in_attn,
dropout_on_attn=dropout_on_attn,
dropout_on_fc1=dropout_on_fc1,
dropout_on_fc2=dropout_on_fc2,
segment_size=segment_size,
std_scale=std_scale,
activation_fn=activation_fn,
tanh_on_mem=tanh_on_mem,
scaled_init=scaled_init,
use_mem=self.use_mem,
mini_batches=mini_batches,
negative_inf=negative_inf,
layer_index=layer_index,
summarization_method=summarization_method,
max_relative_position=max_relative_position,
rpe_old_option=rpe_old_option,
)
)
def set_mini_batches(self, mini_batches):
# handy function only used for unit test
self.mini_batches = mini_batches
for layer in self.layers:
layer.set_mini_batches(mini_batches)
def _get_relative_position(
self,
input: Tensor,
max_relative_position: int,
left_context_length: int,
past_length: int,
is_decoding: bool,
):
# For training, we copy the right context to the start of the utterance
# First dimension in distance is corresponding to query.
# [right context, utterance, summary vector]
# Second dimension in distance is corresponding to key.
# [Memory bank, right context, utterance]
# For summary vector in query part, the distance with
# all other position is 2*max_position. For memory bank in key,
# the distance with all other positions is 0.
T, B, D = input.shape
num_segs = math.ceil((T - self.right_context) / self.segment_size)
# utterance
u_st = past_length * self.segment_size
u_ed = u_st + T
utterance_ranges = torch.arange(u_st, u_ed - self.right_context)
# left context. Only in minibatch or decoding
left_context_ranges = torch.arange(u_st - left_context_length, u_st)
# Right context block
# right context + utterance
right_context_blocks = []
for i in range(0, num_segs - 1):
st = (i + 1) * self.segment_size + u_st
ed = st + self.right_context
assert ed < u_ed
temp = torch.arange(st, ed)
right_context_blocks.append(temp)
right_context_blocks.append(torch.arange(u_ed - self.right_context, u_ed))
right_context_ranges = torch.cat(right_context_blocks)
if self.use_mem:
# Memory bank
# The position for memory -n, .., -1
if is_decoding:
memory_size = min(past_length, self.max_memory_size)
else:
memory_size = num_segs + past_length - 1
memory_bank_ranges = torch.arange(
-max_relative_position - 1, -max_relative_position - 1 - memory_size, -1
)
# summary vector
# The position for summary vector as the T+max_relative_position+1.
# After the clamping, the relative position is max_relative_position
summary_pos_st = u_ed + max_relative_position + 1
summary_vector_ranges = torch.arange(
summary_pos_st, summary_pos_st + num_segs
)
key_ranges = torch.cat(
[
memory_bank_ranges,
right_context_ranges,
left_context_ranges,
utterance_ranges,
]
)
query_ranges = torch.cat(
[right_context_ranges, utterance_ranges, summary_vector_ranges]
)
else:
key_ranges = torch.cat(
[right_context_ranges, left_context_ranges, utterance_ranges]
)
query_ranges = torch.cat([right_context_ranges, utterance_ranges])
distance = key_ranges[None, :] - query_ranges[:, None]
distance_clamp = (
torch.clamp(distance, -max_relative_position, max_relative_position)
+ max_relative_position
)
distance_clamp = distance_clamp.to(input.device).long().detach()
return distance_clamp
def _get_attention_mask(self, input, past_length=0, left_context_cache=0):
# attention mask for each query contains three parts:
# 1. memory part
# 2. left_context + segment
# 3. right_context_block
# so for each segment and its correspoinding right context block,
# the attention matrix is formed by 9 parts:
# [0, m, 0, 0, right_context, 0, 0, seg, 0]
# [before memory, memory, after memory, before right context, right_context,
# after right context, before seg, seg, after seg]
#
# Query is formed in the way as [right_context_blocks, utterance, summary]
#
# Note: put m and right_context before segment is convenient
# for padding_mask operation.
# Key lengths = m_length + right_context_block_length + lengths
utterance_length, batch_size, _ = input.shape
summary_length = math.ceil(utterance_length / self.segment_size)
num_segs = summary_length
rc_length = self.right_context * num_segs
rc = self.right_context
lc = self.left_context
# using mini-batches, there is left context cache available for current
# sequence.
lcc = left_context_cache
# max_memory_size is 0 then we don't have memory and summary
# past_length is the memory carry from previous sequence
if self.use_mem:
mem_length = num_segs - 1 + past_length
else:
mem_length = 0
rc_mask = []
query_mask = []
summary_mask = []
for j in range(0, num_segs):
ssize = min(self.segment_size, utterance_length - j * self.segment_size)
rc_size = rc
rc_mat = []
q_mat = []
s_mat = []
m_start = max(j + past_length - self.max_memory_size, 0)
# max_memory_size is 0, then we don't use memory
if self.use_mem:
# part 0: before memory
rc_mat.append(input.new_zeros(rc_size, m_start))
q_mat.append(input.new_zeros(ssize, m_start))
s_mat.append(input.new_zeros(1, m_start))
# part 1: memory
col_1 = j + past_length - m_start
rc_mat.append(torch.ones(rc_size, col_1, device=input.device))
q_mat.append(torch.ones(ssize, col_1, device=input.device))
# based on D22875746, disable summary query attention
# on memeory is better for long form utterance
s_mat.append(input.new_zeros(1, col_1))
# part 2: after memory
col_2 = mem_length - (j + past_length)
rc_mat.append(input.new_zeros(rc_size, col_2))
q_mat.append(input.new_zeros(ssize, col_2))
s_mat.append(input.new_zeros(1, col_2))
# part 3: before right context
rc_start = j * rc
rc_mat.append(input.new_zeros(rc_size, rc_start))
q_mat.append(input.new_zeros(ssize, rc_start))
s_mat.append(input.new_zeros(1, rc_start))
# part 4: right context
rc_end = rc_start + rc
col_4 = rc
rc_mat.append(torch.ones(rc_size, col_4, device=input.device))
q_mat.append(torch.ones(ssize, col_4, device=input.device))
s_mat.append(torch.ones(1, col_4, device=input.device))
# part 5: after right context
col_5 = rc_length - rc_end
rc_mat.append(input.new_zeros(rc_size, col_5))
q_mat.append(input.new_zeros(ssize, col_5))
s_mat.append(input.new_zeros(1, col_5))
# part 6: before query segment
seg_start = max(j * self.segment_size + lcc - lc, 0)
rc_mat.append(input.new_zeros(rc_size, seg_start))
q_mat.append(input.new_zeros(ssize, seg_start))
s_mat.append(input.new_zeros(1, seg_start))
# part 7: query segment
# note: right context is put in right context block
# here we only need to consider about left context
seg_end = min((j + 1) * self.segment_size + lcc, utterance_length + lcc)
col_7 = seg_end - seg_start
rc_mat.append(torch.ones(rc_size, col_7, device=input.device))
q_mat.append(torch.ones(ssize, col_7, device=input.device))
s_mat.append(torch.ones(1, col_7, device=input.device))
# part 8: after query segment
col_8 = utterance_length + lcc - seg_end
rc_mat.append(input.new_zeros(rc_size, col_8))
q_mat.append(input.new_zeros(ssize, col_8))
s_mat.append(input.new_zeros(1, col_8))
rc_mask.append(torch.cat(rc_mat, dim=1))
query_mask.append(torch.cat(q_mat, dim=1))
summary_mask.append(torch.cat(s_mat, dim=1))
# no memory, then we don't need summary either
if self.use_mem:
attention_mask = (
1
- torch.cat(
[
torch.cat(rc_mask, dim=0),
torch.cat(query_mask, dim=0),
torch.cat(summary_mask, dim=0),
],
dim=0,
)
).to(torch.bool)
else:
attention_mask = (
1
- torch.cat(
[torch.cat(rc_mask, dim=0), torch.cat(query_mask, dim=0)], dim=0
)
).to(torch.bool)
return attention_mask
@torch.jit.export
def init_state(
self, batch_size: int, device: Optional[Device] = None
) -> List[Tensor]:
empty_memory = torch.zeros(
self.num_layers,
self.max_memory_size,
batch_size,
self.memory_dim,
device=device,
)
left_context_key = torch.zeros(
self.num_layers,
self.left_context,
batch_size,
self.memory_dim,
device=device,
)
left_context_val = torch.zeros(
self.num_layers,
self.left_context,
batch_size,
self.memory_dim,
device=device,
)
past_length = torch.zeros(1, batch_size, dtype=torch.int32, device=device)
return [empty_memory, left_context_key, left_context_val, past_length]
@torch.jit.export
def batch_state(self, states: List[List[Tensor]]) -> List[Tensor]:
if len(states) == 0:
return []
batched_m = []
batched_lc_key = []
batched_lc_val = []
batched_past_length = []
for state in states:
if len(state) == 0:
continue
m, lc_key, lc_val, past_length = state
batched_m.append(m)
batched_lc_key.append(lc_key)
batched_lc_val.append(lc_val)
batched_past_length.append(past_length)
if (
(len(batched_m) == 0)
or (len(batched_lc_key) == 0)
or (len(batched_lc_val) == 0)
or (len(batched_past_length) == 0)
):
return [
torch.tensor([]),
torch.tensor([]),
torch.tensor([]),
torch.tensor([]),
]
batched_m = torch.cat(batched_m, dim=2)
batched_lc_key = torch.cat(batched_lc_key, dim=2)
batched_lc_val = torch.cat(batched_lc_val, dim=2)
batched_past_length = torch.cat(batched_past_length, dim=1)
return [batched_m, batched_lc_key, batched_lc_val, batched_past_length]
@torch.jit.export
def reorder_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]:
if len(state) == 0:
return []
m, lc_key, lc_val, past_length = state
indices = indices.to(device=m.device)
reord_m = torch.index_select(m, 2, indices)
reord_lc_key = torch.index_select(lc_key, 2, indices)
reord_lc_val = torch.index_select(lc_val, 2, indices)
reord_past_length = torch.index_select(past_length, 1, indices)
return [reord_m, reord_lc_key, reord_lc_val, reord_past_length]
@torch.jit.export
def reset_state(self, state: List[Tensor], indices: Tensor) -> List[Tensor]:
m, lc_key, lc_val, past_length = state
m = m.index_fill(dim=2, index=indices, value=0.0)
lc_key = lc_key.index_fill(dim=2, index=indices, value=0.0)
lc_val = lc_val.index_fill(dim=2, index=indices, value=0.0)
past_length = past_length.index_fill(dim=1, index=indices, value=0)
return [m, lc_key, lc_val, past_length]
@torch.jit.export
def state_size(self) -> int:
return 4
@torch.jit.export
def batch_size_in_state(
self, state: Optional[List[Tensor]], sloppy: bool = True
) -> Optional[int]:
if state is None:
return None
return state[0].size(2)
def gen_summary_queries(self, input):
sum_input = self.memory_op(input)
return sum_input
def _gen_right_context_padded_input(self, input):
# This function deals with input that is already
# padded with right context (e.g. minibatch training)
right_context_blocks = []
T, B, D = input.shape
num_segs = math.ceil((T - self.right_context) / self.segment_size)
for i in range(0, num_segs - 1):
st = (i + 1) * self.segment_size
ed = st + self.right_context
assert ed < T
temp = input[st:ed, :, :]
right_context_blocks.append(temp)
# last segment right context is already available
right_context_blocks.append(input[T - self.right_context :, :, :])
return torch.cat(right_context_blocks, dim=0)
def _gen_segs_right_context(self, input, lengths):
segments = []
T, B, D = input.size()
nT = T - self.right_context
# assume input is right context padded
num_segs = math.ceil(nT / self.segment_size)
# pad zeros to the utterance to make sure each
# segment has the same right context. For the
for i in range(0, num_segs - 1):
st = i * self.segment_size
ed = min(T, st + self.segment_size + self.right_context)
temp = input[st:ed, :, :]
rest_lengths = torch.clamp(
lengths - self.segment_size, min=0, max=nT - (i + 1) * self.segment_size
)
segments.append((temp, lengths - rest_lengths + self.right_context))
lengths = rest_lengths
last_seg = input[st + self.segment_size :, :, :]
segments.append((last_seg, rest_lengths + self.right_context))
return segments
@torch.jit.unused
def forward(
self, input: Tensor, padding_masks: Tensor, state: Optional[List[Tensor]] = None
) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]:
# Xutai: originally the second argument is lengths.
lengths = (~padding_masks).sum(dim=1).long()
# mini batch training.
if self.mini_batches:
return self.forward_mini_batches(input, lengths, state)
# regular full sequence training. Note, assume the right context in provided
# in the input.
T, B, D = input.size()
right_context_blocks = self._gen_right_context_padded_input(input)
# generate the relative positional embedding
if self.use_rpe:
rpe = self._get_relative_position(
input=input,
max_relative_position=self.max_relative_position,
left_context_length=0,
past_length=0,
is_decoding=False,
)
else:
rpe = None
input = input[: T - self.right_context, :, :]
attention_mask = self._get_attention_mask(input)
# firt layer use each segment mean as memory
# ignore the last one seg average
if self.use_mem:
mems = self.gen_summary_queries(input)[:-1, :, :]
else:
mems = torch.zeros(0, input.size(1), input.size(2), device=input.device)
mems = mems.type_as(input)
output = input
all_outputs = []
for layer in self.layers:
output, mems, right_context_blocks, _, _ = layer(
input=output,
lengths=lengths,
attention_mask=attention_mask,
mems=mems,
right_context_blocks=right_context_blocks,
pre_mems=None,
left_context_key=None,
left_context_val=None,
rpe=rpe,
)
all_outputs.append(output)
return output, padding_masks, [], all_outputs
def forward_jit_mini_batch_init(
self,
seg: Tensor,
state: Optional[List[Tensor]] = None,
is_decoding: bool = False,
):
# Prepare state. In whole sequence training, state is ignored.
# For minibatch training, we need to prepare state
if state is None:
state = self.init_state(batch_size=seg.size(1), device=seg.device)
if seg.dtype == torch.half:
state = [state[0].half(), state[1].half(), state[2].half(), state[3]]
if self.use_mem:
# note input average only on seg, not on right context
# first layer use each segmetn mean as memory. the last
# one segment average is used in state
full_mems = self.gen_summary_queries(seg)
if is_decoding:
mems = full_mems[0:1, :, :]
state_mems = torch.cat([state[0][0], mems], dim=0)
else:
mems = full_mems[:-1, :, :]
state_mems = torch.cat([state[0][0], full_mems], dim=0)
else:
mems = state[0][0]
state_mems = mems
# track processed segment number or memory number
# the same batch as the same bumber of past length
past_length = state[3][0][0].item()
past_left_context = min(past_length * self.segment_size, self.left_context)
past_length = min(self.max_memory_size, past_length)
return state, mems, state_mems, past_length, past_left_context
def state_update_before(
self, layer: int, state: List[Tensor], past_length: int, past_left_context: int
):
pre_mems = state[0][layer][self.max_memory_size - past_length :, :, :]
lc_key = state[1][layer][self.left_context - past_left_context :, :, :]
lc_val = state[2][layer][self.left_context - past_left_context :, :, :]
return pre_mems, lc_key, lc_val
def state_update_after(
self,
layer: int,
state: List[Tensor],
mems: Tensor,
next_key: Tensor,
next_val: Tensor,
mems_list: List[Tensor],
lc_key_list: List[Tensor],
lc_val_list: List[Tensor],
):
# mems is used for next layer
if layer < self.num_layers - 1:
state_mems = torch.cat([state[0][layer + 1], mems], dim=0)
mems_list.append(state_mems[-self.max_memory_size :, :, :])
# when mems pass to next sequence, we need the last memory. when mems
# use for the next layer, we can ignore the last memory
mems = mems[:-1, :, :]
# note state[1][i] and state[2][i] original length equals to self.left_context
new_k = torch.cat([state[1][layer], next_key], dim=0)
new_v = torch.cat([state[2][layer], next_val], dim=0)
lc_key_list.append(new_k[-self.left_context :, :, :])
lc_val_list.append(new_v[-self.left_context :, :, :])
return mems_list, lc_key_list, lc_val_list, mems
def state_update_after_loop(
self,
state: List[Tensor],
mems_list: List[Tensor],
lc_key_list: List[Tensor],
lc_val_list: List[Tensor],
update_length: int,
):
state[0] = torch.stack(mems_list, dim=0)
state[1] = torch.stack(lc_key_list, dim=0)
state[2] = torch.stack(lc_val_list, dim=0)
state[3] = state[3] + update_length
return state
@torch.jit.unused
def forward_mini_batches(
self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
) -> Tuple[Tensor, Tensor, List[Tensor], List[Tensor]]:
T, B, D = input.size()
# input without right context
seg = input[: T - self.right_context, :, :]
# get right context blocks
right_context_blocks = self._gen_right_context_padded_input(input)
mems_list = []
lc_key_list = []
lc_val_list = []
results = self.forward_jit_mini_batch_init(seg, state, False)
state, mems, state_mems, past_length, past_left_context = results
# relative position embedding
if self.use_rpe:
rpe = self._get_relative_position(
input=input,
max_relative_position=self.max_relative_position,
left_context_length=past_left_context,
past_length=past_length,
is_decoding=False,
)
else:
rpe = None
# get attention mask based on seg (not include right context) and available
# left context
attention_mask = self._get_attention_mask(seg, past_length, past_left_context)
mems_list.append(state_mems[-self.max_memory_size :, :, :])
output = seg
i = 0
all_outputs = []
for layer in self.layers:
# In order to make cross stream batching work, mem, left context key
# and left context value in the state should always be the same shape.
# We use the past length to track the processed segment number. In this
# way, we take out the essential memory, left context key and left
# context val from the state. After finish the forward for current segment
# we add the new memory, left context key and left context value into the
# staate and trim out the oldest part to keep the shape consistent.
pre_mems, lc_key, lc_val = self.state_update_before(
i, state, past_length, past_left_context
)
output, mems, right_context_blocks, next_key, next_val = layer.forward(
input=output,
lengths=lengths,
attention_mask=attention_mask,
mems=mems,
right_context_blocks=right_context_blocks,
pre_mems=pre_mems,
left_context_key=lc_key,
left_context_val=lc_val,
rpe=rpe,
)
all_outputs.append(output)
mems_list, lc_key_list, lc_val_list, mems = self.state_update_after(
layer=i,
state=state,
mems=mems,
next_key=next_key,
next_val=next_val,
mems_list=mems_list,
lc_key_list=lc_key_list,
lc_val_list=lc_val_list,
)
i += 1
# update state
update_length = math.ceil((T - self.right_context) / self.segment_size)
state = self.state_update_after_loop(
state=state,
mems_list=mems_list,
lc_key_list=lc_key_list,
lc_val_list=lc_val_list,
update_length=update_length,
)
return output, lengths, state, all_outputs
def forward_jit_test(
self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""
This one simulate sequence encoder forward jit. This is for unit test purpose.
It is not used in training or decoding. Note, extra_right_context is set in
the model. In unit test, input = [utterance, right_context], lengths =
[utterance_length].
args:
input: input utterance
lengths: utterance input length
state: None here. input is whole utterance
"""
# [TODO] sequence_to_segment has bug in lengths.
seg_src_tokens_lengths = self._gen_segs_right_context(input, lengths)
seg_enc_tokens_lengths: List[Tuple[Tensor, Tensor]] = []
state: Optional[List[Tensor]] = None
for seg_src_tokens, seg_src_lengths in seg_src_tokens_lengths:
seg_enc_tokens, seg_enc_lengths, state = self.forward_jit(
input=seg_src_tokens, lengths=seg_src_lengths, state=state
)
seg_enc_tokens_lengths.append((seg_enc_tokens, seg_enc_lengths))
enc_tokens, enc_lengths = segments_to_sequence(
segments=seg_enc_tokens_lengths, time_axis=0
)
state = [] # returns trivial state
return enc_tokens, enc_lengths, state
@torch.jit.export
def forward_jit(
self, input: Tensor, lengths: Tensor, state: Optional[List[Tensor]] = None
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""
Forward helper for online decoding.
args:
input: [seg, right_context]. We assume in online we
always padding the right context to the preset right context size.
For the last segment, we may have short segment size, but right
context size is the same as other segments
lengths: utterance input length is the utterance segment length and
right context size
state: [memory, left_context_key, left_context_val]. To improve throughput,
in addition to memory, we also cache key and value for left_context in
multihead self-attention
"""
# In online decoding, input = [segment, right_context]
# Lengths = [segment_length, right_context_length]
# so we need strip right context in output
T, B, D = input.size()
rc_str = T - self.right_context
rc_end = T
right_context_blocks = input[rc_str:rc_end, :, :]
seg = input[:rc_str, :, :]
lengths = torch.clamp(lengths - self.right_context, min=0)
mems_list = []
lc_key_list = []
lc_val_list = []
results = self.forward_jit_mini_batch_init(seg, state, True)
state, mems, state_mems, past_length, past_left_context = results
# relative position embedding
if self.use_rpe:
rpe = self._get_relative_position(
input=input,
max_relative_position=self.max_relative_position,
left_context_length=past_left_context,
past_length=past_length,
is_decoding=True,
)
else:
rpe = None
# memory for first layer.
mems_list.append(state_mems[-self.max_memory_size :, :, :])
output = seg
i = 0
for layer in self.layers:
# In order to make cross stream batching work, mem, left context key
# and left context value in the state should always be the same shape.
# We use the past length to track the processed segment number. In this
# way, we take out the essential memory, left context key and left
# context val from the state. After finish the forward for current segment
# we add the new memory, left context key and left context value into the
# staate and trim out the oldest part to keep the shape consistent.
true_mems, lc_key, lc_val = self.state_update_before(
layer=i,
state=state,
past_length=past_length,
past_left_context=past_left_context,
)
output, mems, right_context_blocks, next_key, next_val = layer.forward_jit(
input=output,
lengths=lengths,
mems=true_mems,
right_context_blocks=right_context_blocks,
left_context_key=lc_key,
left_context_val=lc_val,
rpe=rpe,
)
# mems is used for next layer
mems_list, lc_key_list, lc_val_list, _ = self.state_update_after(
layer=i,
state=state,
mems_list=mems_list,
mems=mems,
next_key=next_key,
next_val=next_val,
lc_key_list=lc_key_list,
lc_val_list=lc_val_list,
)
i += 1
# update state
state = self.state_update_after_loop(
state=state,
mems_list=mems_list,
lc_key_list=lc_key_list,
lc_val_list=lc_val_list,
update_length=1,
)
return output, lengths, state
def quantize_(self, params=None):
if params and "per_channel" in params and params["per_channel"]:
qconfig = per_channel_dynamic_qconfig
else:
qconfig = default_dynamic_qconfig
torch.quantization.quantize_dynamic(
self, {torch.nn.Linear: qconfig}, dtype=torch.qint8, inplace=True
)
return self
# ------------------------------------------------------------------------------
# Emformer encoder for seq2seq model
# This is a wrapper over the original emformer
# ------------------------------------------------------------------------------
def emformer_encoder(klass):
class SpeechEncoder(klass):
def __init__(self, args):
super().__init__(args)
stride = SpeechEncoder.conv_layer_stride(args)
trf_left_context = args.segment_left_context // stride
trf_right_context = args.segment_right_context // stride
context_config = [trf_left_context, trf_right_context]
self.transformer_layers = nn.ModuleList(
[
NoSegAugmentedMemoryTransformerEncoderLayer(
input_dim=args.encoder_embed_dim,
num_heads=args.encoder_attention_heads,
ffn_dim=args.encoder_ffn_embed_dim,
num_layers=args.encoder_layers,
dropout_in_attn=args.dropout,
dropout_on_attn=args.dropout,
dropout_on_fc1=args.dropout,
dropout_on_fc2=args.dropout,
activation_fn=args.activation_fn,
context_config=context_config,
segment_size=args.segment_length,
max_memory_size=args.max_memory_size,
scaled_init=True, # TODO: use constant for now.
tanh_on_mem=args.amtrf_tanh_on_mem,
)
]
)
def forward(self, src_tokens, src_lengths):
encoder_out = super().forward(src_tokens, src_lengths)
output = encoder_out["encoder_out"][0]
encoder_padding_masks = encoder_out["encoder_padding_mask"][0]
# This is because that in the original implementation
# the output didn't consider the last segment as right context.
encoder_padding_masks = encoder_padding_masks[:, : output.size(0)]
return {
"encoder_out": [output],
"encoder_padding_mask": [encoder_padding_masks],
"encoder_embedding": [],
"encoder_states": [],
"src_tokens": [],
"src_lengths": [],
}
@staticmethod
def conv_layer_stride(args):
# TODO: make it configurable from the args
return 4
SpeechEncoder.__name__ = klass.__name__
return SpeechEncoder