import torch | |
from diffusers import DiffusionPipeline # type: ignore | |
import gradio as gr | |
generator = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
# move to GPU if available | |
if torch.cuda.is_available(): | |
generator = generator.to("cuda") | |
def generate(prompts): | |
images = generator(list(prompts)).images # type: ignore | |
return [images] | |
demo = gr.Interface(generate, | |
"textbox", | |
"image", | |
batch=True, | |
max_batch_size=4 # Set the batch size based on your CPU/GPU memory | |
) | |
if __name__ == "__main__": | |
demo.launch() | |