File size: 11,642 Bytes
e547b24 7abf720 e547b24 2f294b2 7abf720 e547b24 2f294b2 7abf720 c84bbeb 2f294b2 e547b24 2f294b2 7abf720 8cf6f97 7abf720 2f294b2 92cbf13 c84bbeb 2f294b2 7abf720 2f294b2 7abf720 e547b24 2f294b2 7abf720 f869ea1 2f294b2 119e558 e547b24 2f294b2 e547b24 2f294b2 7abf720 2f294b2 e547b24 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 c84bbeb 2f294b2 7abf720 2f294b2 e547b24 7abf720 e547b24 02f8cfa c84bbeb 02f8cfa 73f7edc c84bbeb 7abf720 2f294b2 e547b24 7abf720 c84bbeb 7abf720 2f294b2 02f8cfa c84bbeb 7abf720 c84bbeb 7abf720 c84bbeb 8cf6f97 7abf720 2f294b2 e547b24 02f8cfa c84bbeb 2f294b2 02f8cfa c84bbeb 2f294b2 7abf720 2f294b2 7abf720 2f294b2 7abf720 2f294b2 e547b24 7abf720 2f294b2 7abf720 2f294b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image, UnidentifiedImageError
from deep_translator import GoogleTranslator
import json
import uuid
from urllib.parse import quote
import traceback
# Project by Nymbo
# --- Constants ---
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
if not API_TOKEN:
print("WARNING: HF_READ_TOKEN environment variable not set. API calls may fail.")
headers = {"Authorization": f"Bearer {API_TOKEN}"} if API_TOKEN else {}
timeout = 100 # seconds for API call timeout
IMAGE_DIR = "temp_generated_images" # Directory to store temporary images
ARINTELLI_REDIRECT_BASE = "https://arintelli.com/app/" # Your redirector URL
# --- Ensure temporary directory exists ---
try:
os.makedirs(IMAGE_DIR, exist_ok=True)
print(f"Confirmed temporary image directory exists: {IMAGE_DIR}")
except OSError as e:
print(f"ERROR: Could not create directory {IMAGE_DIR}: {e}")
# This is critical, so raise an error to prevent app start if dir fails
raise gr.Error(f"Fatal Error: Cannot create temporary image directory: {e}")
# --- Get Absolute Path for allowed_paths ---
# This needs to be done *before* calling launch()
absolute_image_dir = os.path.abspath(IMAGE_DIR)
print(f"Absolute path for allowed_paths: {absolute_image_dir}")
# Function to query the API and return the generated image and download link
def query(prompt, negative_prompt="", steps=4, cfg_scale=0, seed=-1, width=1024, height=1024):
# Removed sampler and strength as they are not explicitly used in the payload below
# Note: If the API endpoint *does* support sampler/strength, add them back to the payload
if not prompt or not prompt.strip():
print("Empty prompt received.")
# Return None for image and an informative message for the HTML component
return None, "<p style='color: orange; text-align: center;'>Please enter a prompt.</p>"
key = random.randint(0, 999)
print(f"\n--- Generation {key} Started ---")
# Translation
try:
translated_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
except Exception as e:
translated_prompt = prompt # Fallback to original if translation fails
# Add suffix to prompt
final_prompt = f"{translated_prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'Generation {key} prompt: {final_prompt}')
# Prepare the payload for the API call
payload = {
"inputs": final_prompt,
"parameters": {
"negative_prompt": negative_prompt,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"width": width,
"height": height,
}
}
# API Call Section
try:
if not headers:
print("WARNING: Authorization header is missing (HF_READ_TOKEN not set?)")
return None, "<p style='color: red; text-align: center;'>Configuration Error: API Token missing.</p>"
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
response.raise_for_status()
image_bytes = response.content
if not image_bytes or len(image_bytes) < 100:
print(f"Error: Received empty or very small response content (length: {len(image_bytes)}). Potential API issue.")
return None, "<p style='color: red; text-align: center;'>API returned invalid image data.</p>"
try:
image = Image.open(io.BytesIO(image_bytes))
except UnidentifiedImageError as img_err:
print(f"Error: Could not identify or open image from API response bytes: {img_err}")
return None, "<p style='color: red; text-align: center;'>Failed to process image data from API.</p>"
# --- Save image and create download link ---
filename = f"{int(time.time())}_{uuid.uuid4().hex[:8]}.png"
save_path = os.path.join(IMAGE_DIR, filename)
absolute_save_path = os.path.abspath(save_path)
try:
image.save(save_path, "PNG")
if os.path.exists(save_path):
file_size = os.path.getsize(save_path)
if file_size < 100:
print(f"WARNING: Saved file {save_path} is very small ({file_size} bytes). May indicate an issue.")
else:
print(f"CRITICAL ERROR: File NOT found at {save_path} (Absolute: {absolute_save_path}) immediately after saving!")
return image, "<p style='color: red; text-align: center;'>Internal Error: Failed to confirm image file save.</p>"
# Determine space name (adjust logic if API_URL format differs)
try:
space_name = "greendra-flux-1-schnell-serverless"
# A more robust way might involve getting the space ID from env vars if available
except IndexError:
print("WARNING: Could not reliably determine space name from API_URL. Using a default.")
space_name = "unknown-flux-space" # Provide a fallback
relative_file_url = f"/gradio_api/file={save_path}"
encoded_file_url = quote(relative_file_url)
arintelli_url = f"{ARINTELLI_REDIRECT_BASE}?download_url={encoded_file_url}&space_name={space_name}"
print(f"{arintelli_url}")
# Use Gradio's primary button style for the link
download_html = (
f'<div style="text-align: center; margin-top: 15px;">' # Added margin-top
f'<a href="{arintelli_url}" target="_blank" class="gr-button gr-button-lg gr-button-primary">'
f'Download Image'
f'</a>'
f'</div>'
)
print(f"--- Generation {key} Done ---")
return image, download_html
except (OSError, IOError) as save_err:
print(f"CRITICAL ERROR: Failed to save image to {save_path} (Absolute: {absolute_save_path}): {save_err}")
traceback.print_exc()
return image, f"<p style='color: red; text-align: center;'>Internal Error: Failed to save image file. Details: {save_err}</p>"
except Exception as e:
print(f"Error during link creation or unexpected save issue: {e}")
traceback.print_exc()
return image, "<p style='color: red; text-align: center;'>Internal Error creating download link.</p>"
# --- Exception Handling for API Call ---
except requests.exceptions.Timeout:
print(f"Error: Request timed out after {timeout} seconds.")
return None, "<p style='color: red; text-align: center;'>Request timed out. The model is taking too long.</p>"
except requests.exceptions.HTTPError as e:
status_code = e.response.status_code
error_text = e.response.text
try:
error_data = e.response.json()
error_text = error_data.get('error', error_text)
if isinstance(error_text, dict) and 'message' in error_text:
error_text = error_text['message']
except json.JSONDecodeError:
pass
print(f"Error: Failed API call. Status: {status_code}, Response: {error_text}")
if status_code == 503:
estimated_time = error_data.get("estimated_time") if 'error_data' in locals() and isinstance(error_data, dict) else None
if estimated_time:
error_message = f"Model is loading (503), please wait. Est. time: {estimated_time:.1f}s. Try again."
else:
error_message = f"Service unavailable (503). Model might be loading or down. Try again later."
elif status_code == 400:
error_message = f"Bad Request (400): Check parameters. API Error: {error_text}"
elif status_code == 422:
error_message = f"Validation Error (422): Input invalid. API Error: {error_text}"
elif status_code == 401 or status_code == 403:
error_message = f"Authorization Error ({status_code}): Check your API Token (HF_READ_TOKEN)."
else:
error_message = f"API Error: {status_code}. Details: {error_text}"
return None, f"<p style='color: red; text-align: center;'>{error_message}</p>"
except Exception as e:
print(f"An unexpected error occurred: {e}")
traceback.print_exc()
return None, f"<p style='color: red; text-align: center;'>An unexpected error occurred: {e}</p>"
# CSS to style the app
css = """
#app-container {
max-width: 800px;
margin-left: auto;
margin-right: auto;
}
textarea:focus {
background: #0d1117 !important;
}
#download-link-container p {
margin-top: 10px;
font-size: 0.9em;
}
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("<center><h1>FLUX.1-Schnell</h1></center>")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=30, step=1) # Default updated based on query function default
cfg = gr.Slider(label="CFG Scale (guidance_scale)", value=0, minimum=0, maximum=10, step=1) # Label updated
# Removed strength and sampler sliders as they are not passed to query
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1, info="Set to -1 for random seed")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# --- Output Components ---
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
with gr.Row():
# HTML component to display status messages or the download link
download_link_display = gr.HTML(elem_id="download-link-container")
# Bind the button to the query function
text_button.click(
query,
# Ensure inputs match the query function definition
inputs=[text_prompt, negative_prompt, steps, cfg, seed, width, height],
# Outputs go to the image and HTML components
outputs=[image_output, download_link_display]
)
# Launch the Gradio app with allowed_paths
print("Starting Gradio app...")
app.launch(
show_api=False,
share=False,
allowed_paths=[absolute_image_dir] # Added allowed_paths
) |