Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,519 Bytes
10e02f0 70926c9 10e02f0 ff72a0b 10e02f0 70926c9 10e02f0 d2c1576 10e02f0 cf2ec57 10e02f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# --------------------------------------------------------
# What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? (https://arxiv.org/abs/2403.06090)
# Github source: https://github.com/aim-uofa/GenPercept
# Copyright (c) 2024, Advanced Intelligent Machines (AIM)
# Licensed under The BSD 2-Clause License [see LICENSE for details]
# By Guangkai Xu
# Based on Marigold, diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------
import logging
from typing import Dict, Optional, Union
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LCMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import BaseOutput
from PIL import Image
from torch.utils.data import DataLoader, TensorDataset
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import pil_to_tensor, resize
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from .util.batchsize import find_batch_size
from .util.ensemble import ensemble_depth
from .util.image_util import (
chw2hwc,
colorize_depth_maps,
get_tv_resample_method,
resize_max_res,
)
import matplotlib.pyplot as plt
from genpercept.models.dpt_head import DPTNeckHeadForUnetAfterUpsampleIdentity
from genpercept.util.image_util import process_normals
class GenPerceptOutput(BaseOutput):
"""
Output class for GenPercept general perception pipeline.
Args:
pred_np (`np.ndarray`):
Predicted result, with values in the range of [0, 1].
pred_colored (`PIL.Image.Image`):
Colorized result, with the shape of [3, H, W] and values in [0, 1].
"""
pred_np: np.ndarray
pred_colored: Union[None, Image.Image]
class GenPerceptPipeline(DiffusionPipeline):
"""
Pipeline for general perception using GenPercept: https://github.com/aim-uofa/GenPercept.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the perception latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and results
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
default_denoising_steps (`int`, *optional*):
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable
quality with the given model. This value must be set in the model config. When the pipeline is called
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure
reasonable results with various model flavors compatible with the pipeline, such as those relying on very
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`).
default_processing_resolution (`int`, *optional*):
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
default value is used. This is required to ensure reasonable results with various model flavors trained
with varying optimal processing resolution values.
"""
latent_scale_factor = 0.18215
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
scheduler: Union[DDIMScheduler, LCMScheduler],
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
default_denoising_steps: Optional[int] = 10,
default_processing_resolution: Optional[int] = 768,
rgb_blending = False,
customized_head = None,
genpercept_pipeline = True,
):
super().__init__()
self.genpercept_pipeline = genpercept_pipeline
if self.genpercept_pipeline:
default_denoising_steps = 1
rgb_blending = True
self.register_modules(
unet=unet,
customized_head=customized_head,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.register_to_config(
default_denoising_steps=default_denoising_steps,
default_processing_resolution=default_processing_resolution,
rgb_blending=rgb_blending,
)
self.default_denoising_steps = default_denoising_steps
self.default_processing_resolution = default_processing_resolution
self.rgb_blending = rgb_blending
self.text_embed = None
self.customized_head = customized_head
if self.customized_head:
assert self.rgb_blending and self.scheduler.beta_start == 1 and self.scheduler.beta_end == 1
assert self.genpercept_pipeline
@torch.no_grad()
def __call__(
self,
input_image: Union[Image.Image, torch.Tensor],
denoising_steps: Optional[int] = None,
ensemble_size: int = 1,
processing_res: Optional[int] = None,
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
generator: Union[torch.Generator, None] = None,
color_map: Union[str, None] = None,
show_progress_bar: bool = True,
ensemble_kwargs: Dict = None,
mode = None,
fix_timesteps = None,
prompt = "",
) -> GenPerceptOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
denoising_steps (`int`, *optional*, defaults to `None`):
Number of denoising diffusion steps during inference. The default value `None` results in automatic
selection.
ensemble_size (`int`, *optional*, defaults to `10`):
Number of predictions to be ensembled.
processing_res (`int`, *optional*, defaults to `None`):
Effective processing resolution. When set to `0`, processes at the original image resolution. This
produces crisper predictions, but may also lead to the overall loss of global context. The default
value `None` resolves to the optimal value from the model config.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize perception result to match input resolution.
Only valid if `processing_res` > 0.
resample_method: (`str`, *optional*, defaults to `bilinear`):
Resampling method used to resize images and perception results. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
generator (`torch.Generator`, *optional*, defaults to `None`)
Random generator for initial noise generation.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized result generation):
Colormap used to colorize the result.
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
Arguments for detailed ensembling settings.
Returns:
`GenPerceptOutput`: Output class for GenPercept general perception pipeline, including:
- **pred_np** (`np.ndarray`) Predicted result, with values in the range of [0, 1]
- **pred_colored** (`PIL.Image.Image`) Colorized result, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
"""
assert mode is not None, "mode of GenPerceptPipeline can be chosen from ['depth', 'normal', 'seg', 'matting', 'dis']."
self.mode = mode
# Model-specific optimal default values leading to fast and reasonable results.
if denoising_steps is None:
denoising_steps = self.default_denoising_steps
if processing_res is None:
processing_res = self.default_processing_resolution
assert processing_res >= 0
assert ensemble_size >= 1
if self.genpercept_pipeline:
assert ensemble_size == 1
assert denoising_steps == 1
else:
# Check if denoising step is reasonable
self._check_inference_step(denoising_steps)
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
# ----------------- Image Preprocess -----------------
# Convert to torch tensor
if isinstance(input_image, Image.Image):
input_image = input_image.convert("RGB")
# convert to torch tensor [H, W, rgb] -> [rgb, H, W]
rgb = pil_to_tensor(input_image)
rgb = rgb.unsqueeze(0) # [1, rgb, H, W]
elif isinstance(input_image, torch.Tensor):
rgb = input_image
else:
raise TypeError(f"Unknown input type: {type(input_image) = }")
input_size = rgb.shape
assert (
4 == rgb.dim() and 3 == input_size[-3]
), f"Wrong input shape {input_size}, expected [1, rgb, H, W]"
# Resize image
if processing_res > 0:
rgb = resize_max_res(
rgb,
max_edge_resolution=processing_res,
resample_method=resample_method,
)
# Normalize rgb values
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = rgb_norm.to(self.dtype)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- Perception Inference -----------------
# Batch repeated input image
duplicated_rgb = rgb_norm.expand(ensemble_size, -1, -1, -1)
single_rgb_dataset = TensorDataset(duplicated_rgb)
if batch_size > 0:
_bs = batch_size
else:
_bs = find_batch_size(
ensemble_size=ensemble_size,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=_bs, shuffle=False
)
# Predict results (batched)
pipe_pred_ls = []
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable = single_rgb_loader
for batch in iterable:
(batched_img,) = batch
pipe_pred_raw = self.single_infer(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
show_pbar=show_progress_bar,
generator=generator,
fix_timesteps=fix_timesteps,
prompt=prompt,
)
pipe_pred_ls.append(pipe_pred_raw.detach())
pipe_preds = torch.concat(pipe_pred_ls, dim=0)
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1:
pipe_pred, _ = ensemble_depth(
pipe_preds,
scale_invariant=True,
shift_invariant=True,
max_res=50,
**(ensemble_kwargs or {}),
)
else:
pipe_pred = pipe_preds
# Resize back to original resolution
if match_input_res:
pipe_pred = resize(
pipe_pred,
input_size[-2:],
interpolation=resample_method,
antialias=True,
)
# Convert to numpy
pipe_pred = pipe_pred.squeeze()
pipe_pred = pipe_pred.cpu().numpy()
# Clip output range
pipe_pred = pipe_pred.clip(0, 1)
if mode == 'normal':
pred_np = process_normals(torch.from_numpy(pred_np)[None])
# Colorize
if color_map is not None:
assert self.mode in ['depth', 'disparity']
pred_colored = colorize_depth_maps(
pipe_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
pred_colored = (pred_colored * 255).astype(np.uint8)
pred_colored_hwc = chw2hwc(pred_colored)
pred_colored_img = Image.fromarray(pred_colored_hwc)
else:
pred_colored_img = (pipe_pred * 255.0).astype(np.uint8)
if len(pred_colored_img.shape) == 3 and pred_colored_img.shape[0] == 3:
pred_colored_img = np.transpose(pred_colored_img, (1, 2, 0))
pred_colored_img = Image.fromarray(pred_colored_img)
if len(pipe_pred.shape) == 3 and pipe_pred.shape[0] == 3:
pipe_pred = np.transpose(pipe_pred, (1, 2, 0))
return GenPerceptOutput(
pred_np=pipe_pred,
pred_colored=pred_colored_img,
)
def _check_inference_step(self, n_step: int) -> None:
"""
Check if denoising step is reasonable
Args:
n_step (`int`): denoising steps
"""
assert n_step >= 1
if isinstance(self.scheduler, DDIMScheduler):
if n_step < 10:
logging.warning(
f"Too few denoising steps: {n_step}. Recommended to use the LCM checkpoint for few-step inference."
)
elif isinstance(self.scheduler, LCMScheduler):
if not 1 <= n_step <= 4:
logging.warning(
f"Non-optimal setting of denoising steps: {n_step}. Recommended setting is 1-4 steps."
)
else:
raise RuntimeError(f"Unsupported scheduler type: {type(self.scheduler)}")
def encode_text(self, prompt):
"""
Encode text embedding for empty prompt
"""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
self.text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
@torch.no_grad()
def single_infer(
self,
rgb_in: torch.Tensor,
num_inference_steps: int,
generator: Union[torch.Generator, None],
show_pbar: bool,
fix_timesteps = None,
prompt = "",
) -> torch.Tensor:
"""
Perform an individual perception result without ensembling.
Args:
rgb_in (`torch.Tensor`):
Input RGB image.
num_inference_steps (`int`):
Number of diffusion denoisign steps (DDIM) during inference.
show_pbar (`bool`):
Display a progress bar of diffusion denoising.
generator (`torch.Generator`)
Random generator for initial noise generation.
Returns:
`torch.Tensor`: Predicted result.
"""
device = self.device
rgb_in = rgb_in.to(device)
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
if fix_timesteps:
timesteps = torch.tensor([fix_timesteps]).long().repeat(self.scheduler.timesteps.shape[0]).to(device)
else:
timesteps = self.scheduler.timesteps # [T]
# Encode image
rgb_latent = self.encode_rgb(rgb_in)
if not (self.rgb_blending or self.genpercept_pipeline):
# Initial result (noise)
pred_latent = torch.randn(
rgb_latent.shape,
device=device,
dtype=self.dtype,
generator=generator,
) # [B, 4, h, w]
else:
pred_latent = rgb_latent
# Batched empty text embedding
if self.text_embed is None:
self.encode_text(prompt)
batch_text_embed = self.text_embed.repeat(
(rgb_latent.shape[0], 1, 1)
).to(device) # [B, 2, 1024]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
if not self.customized_head:
for i, t in iterable:
if self.genpercept_pipeline and i > 0:
assert ValueError, "GenPercept only forward once."
if not (self.rgb_blending or self.genpercept_pipeline):
unet_input = torch.cat(
[rgb_latent, pred_latent], dim=1
) # this order is important
else:
unet_input = pred_latent
# predict the noise residual
noise_pred = self.unet(
unet_input, t, encoder_hidden_states=batch_text_embed
).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(
noise_pred, t, pred_latent, generator=generator
)
pred_latent = step_output.prev_sample
pred_latent = step_output.pred_original_sample # NOTE: for GenPercept, it is equivalent to "pred_latent = - noise_pred"
pred = self.decode_pred(pred_latent)
# clip prediction
pred = torch.clip(pred, -1.0, 1.0)
# shift to [0, 1]
pred = (pred + 1.0) / 2.0
elif isinstance(self.customized_head, DPTNeckHeadForUnetAfterUpsampleIdentity):
unet_input = pred_latent
model_pred_output = self.unet(
unet_input, timesteps, encoder_hidden_states=batch_text_embed, return_feature=True
) # [B, 4, h, w]
unet_features = model_pred_output.multi_level_feats[::-1]
pred = self.customized_head(hidden_states=unet_features).prediction[:, None]
# shift to [0, 1]
pred = (pred - pred.min()) / (pred.max() - pred.min())
else:
raise ValueError
return pred
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.latent_scale_factor
return rgb_latent
def decode_pred(self, pred_latent: torch.Tensor) -> torch.Tensor:
"""
Decode pred latent into result.
Args:
pred_latent (`torch.Tensor`):
pred latent to be decoded.
Returns:
`torch.Tensor`: Decoded result.
"""
# scale latent
pred_latent = pred_latent / self.latent_scale_factor
# decode
z = self.vae.post_quant_conv(pred_latent)
stacked = self.vae.decoder(z)
if self.mode in ['depth', 'matting', 'dis']:
# mean of output channels
stacked = stacked.mean(dim=1, keepdim=True)
return stacked
|