|
|
|
|
|
import gradio as gr |
|
import os |
|
import torch |
|
|
|
from model import create_effnetb0_model |
|
from timeit import default_timer as timer |
|
from typing import Tuple, Dict |
|
|
|
|
|
class_names = ["eugene_h_krabs", "gary_the_snail", "karen_plankton", "mrs_puff", "patrick_star", "pearl_krabs", "sandy_cheeks", "sheldon_j_plankton", "spongebob_squarepants", "squidward_tentacles"] |
|
|
|
|
|
|
|
effnetb0, effnetb0_transforms = create_effnetb0_model( |
|
num_classes=10 |
|
) |
|
|
|
|
|
effnetb0.load_state_dict( |
|
torch.load( |
|
f="model_efficientnet_b0.pth", |
|
map_location=torch.device("cpu") |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
def predict(img) -> Tuple[Dict, float]: |
|
"""Transforms and performs a prediction on img and returns prediction and time taken. |
|
""" |
|
|
|
start_time = timer() |
|
|
|
|
|
img = effnetb0_transforms(img).unsqueeze(dim=0) |
|
|
|
|
|
effnetb0.eval() |
|
with torch.inference_mode(): |
|
|
|
pred_probs = torch.softmax(effnetb0(img), dim=1) |
|
|
|
|
|
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} |
|
|
|
|
|
pred_time = round(timer() - start_time) |
|
|
|
|
|
return pred_labels_and_probs, pred_time |
|
|
|
|
|
title = "Spongebob Character Identifier π§½πππ¦πΏοΈπππ³π₯οΈ" |
|
description = "An EfficientNetB0 feature extractor computer vision model to classify between 10 character from Spongebob Squarepants: Spongebob, Patrick, Squidward, Gary, Mr. Krabs, Mrs.Puff, Sandy, Plankton, Karen, and Pearl" |
|
article = "Read more at: [Spongebob Character Identifier](https://gulnuravci.github.io/scripts/project_pages/spongebob_character_identifier/spongebob_identifier.html)" |
|
|
|
|
|
example_list = [["examples/" + example] for example in os.listdir("examples")] |
|
|
|
demo = gr.Interface(fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Label(num_top_classes=10, label="Predictions"), |
|
gr.Number(label="Prediction time (s)")], |
|
examples=example_list, |
|
title=title, |
|
description=description, |
|
article=article) |
|
|
|
demo.launch() |
|
|