Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
import torch | |
from PIL import Image | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained("guneetsk99/finance_qwen_VL_7B") | |
model = AutoModelForImageTextToText.from_pretrained("guneetsk99/finance_qwen_VL_7B") | |
def predict(input_img, text_prompt): | |
# Preprocess the image and text prompt | |
inputs = processor(images=input_img, text=text_prompt, return_tensors="pt").to(model.device) | |
# Generate predictions using the model | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
# Decode the generated text | |
generated_text = processor.decode(outputs[0], skip_special_tokens=True) | |
return input_img, generated_text | |
# Create the Gradio interface | |
gradio_app = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(label="Upload Image", source="upload", type="pil"), | |
gr.Textbox(label="Text Prompt", placeholder="Enter a text prompt, e.g., 'Describe this image.'"), | |
], | |
outputs=[ | |
gr.Image(label="Uploaded Image"), | |
gr.Textbox(label="Generated Response"), | |
], | |
title="Finance Image-to-Text Model", | |
description="Upload a financial document image and provide a text prompt for the model to process the image and generate a text response.", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() | |