Spaces:
Runtime error
Runtime error
import contextlib | |
import os | |
import gc | |
import random | |
import shutil | |
import time | |
import traceback | |
import zipfile | |
import filelock | |
import numpy as np | |
import pandas as pd | |
import torch | |
def set_seed(seed: int): | |
""" | |
Sets the seed of the entire notebook so results are the same every time we run. | |
This is for REPRODUCIBILITY. | |
""" | |
np.random.seed(seed) | |
random_state = np.random.RandomState(seed) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
return random_state | |
def flatten_list(lis): | |
"""Given a list, possibly nested to any level, return it flattened.""" | |
new_lis = [] | |
for item in lis: | |
if type(item) == type([]): | |
new_lis.extend(flatten_list(item)) | |
else: | |
new_lis.append(item) | |
return new_lis | |
def clear_torch_cache(): | |
if torch.cuda.is_available: | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
def system_info(): | |
import psutil | |
system = {} | |
# https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard | |
# https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749 | |
temps = psutil.sensors_temperatures(fahrenheit=False) | |
if 'coretemp' in temps: | |
coretemp = temps['coretemp'] | |
temp_dict = {k.label: k.current for k in coretemp} | |
for k, v in temp_dict.items(): | |
system['CPU_C/%s' % k] = v | |
# https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt | |
from pynvml.smi import nvidia_smi | |
nvsmi = nvidia_smi.getInstance() | |
gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in | |
enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])} | |
for k, v in gpu_power_dict.items(): | |
system['GPU_W/%s' % k] = v | |
gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in | |
enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])} | |
for k, v in gpu_temp_dict.items(): | |
system['GPU_C/%s' % k] = v | |
gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in | |
enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])} | |
gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in | |
enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])} | |
gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict} | |
for k, v in gpu_memory_frac_dict.items(): | |
system[f'GPU_M/%s' % k] = v | |
return system | |
def system_info_print(): | |
try: | |
df = pd.DataFrame.from_dict(system_info(), orient='index') | |
# avoid slamming GPUs | |
time.sleep(1) | |
return df.to_markdown() | |
except Exception as e: | |
return "Error: %s" % str(e) | |
def zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'): | |
try: | |
return _zip_data(zip_path=zip_path, base_dir=base_dir, root_dirs=root_dirs) | |
except Exception as e: | |
traceback.print_exc() | |
print('Exception in zipping: %s' % str(e)) | |
def _zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'): | |
assert root_dirs is not None | |
with zipfile.ZipFile(zip_path, "w") as expt_zip: | |
for root_dir in root_dirs: | |
if root_dir is None: | |
continue | |
for root, d, files in os.walk(root_dir): | |
for file in files: | |
file_to_archive = os.path.join(root, file) | |
assert os.path.exists(file_to_archive) | |
path_to_archive = os.path.relpath(file_to_archive, base_dir) | |
expt_zip.write(filename=file_to_archive, arcname=path_to_archive) | |
return "data.zip" | |
def save_generate_output(output=None, base_model=None, json_file_path=None): | |
try: | |
return _save_generate_output(output=output, base_model=base_model, json_file_path=json_file_path) | |
except Exception as e: | |
traceback.print_exc() | |
print('Exception in saving: %s' % str(e)) | |
def _save_generate_output(output=None, base_model=None, json_file_path=None): | |
""" | |
Save conversation to .json, row by row | |
Appends if file exists | |
""" | |
assert isinstance(json_file_path, str), "must provide save_path" | |
as_file = os.path.normpath(json_file_path) | |
if os.path.isfile(as_file): | |
# protection if had file there before | |
os.remove(as_file) | |
os.makedirs(json_file_path, exist_ok=True) | |
json_file_file = os.path.join(json_file_path, 'save.json') | |
import json | |
if output[-10:] == '\n\n<human>:': | |
# remove trailing <human>: | |
output = output[:-10] | |
with filelock.FileLock("save_path.lock"): | |
# lock logging in case have concurrency | |
with open(json_file_file, "a") as f: | |
# just add [ at start, and ] at end, and have proper JSON dataset | |
f.write( | |
" " + json.dumps( | |
dict(text=output, time=time.ctime(), base_model=base_model) | |
) + ",\n" | |
) | |