Spaces:
Runtime error
Runtime error
File size: 10,355 Bytes
61e4fc2 bfa0967 61e4fc2 2914aec a8dd096 61e4fc2 bfa0967 61e4fc2 bfa0967 61e4fc2 bfa0967 61e4fc2 bfa0967 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 61e4fc2 bfa0967 61e4fc2 bfa0967 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 bfa0967 61e4fc2 a8dd096 bfa0967 61e4fc2 bfa0967 61e4fc2 bfa0967 61e4fc2 a8dd096 2914aec bfa0967 a8dd096 61e4fc2 bfa0967 e7cdd9d a8dd096 61e4fc2 a8dd096 bfa0967 a8dd096 bfa0967 a8dd096 61e4fc2 bfa0967 a8dd096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import pandas as pd # stress hydrique and rendement, besoin en eau
import plotly.graph_objects as go
from typing import List
import plotly.express as px
from data_pipelines.historical_weather_data import (
download_historical_weather_data,
aggregate_hourly_weather_data,
)
import os
from forecast import get_forecast_datasets, get_forecast_data
def concatenate_historic_forecast(
historic, forecast, cols_to_keep, value_period_col="forecast scénario modéré"
):
historic["period"] = "historique"
forecast["period"] = value_period_col
historic = historic[cols_to_keep]
forecast = forecast[cols_to_keep]
full_data = pd.concat([historic, forecast])
return full_data
def visualize_climate(
moderate: pd.DataFrame,
historic: pd.DataFrame,
pessimist: pd.DataFrame,
x_axis="year",
column: str = "Precipitation (mm)",
cols_to_keep: List[str] = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
"year",
"period",
],
):
concatenated_moderate = concatenate_historic_forecast(historic, moderate, cols_to_keep)
concatenated_moderate = concatenated_moderate.sort_values(by=x_axis) # Ensure order
fig = go.Figure()
if column == "Precipitation (mm)":
for condition_value in concatenated_moderate["period"].unique():
segment = concatenated_moderate[concatenated_moderate["period"] == condition_value]
avg_precipitation = segment.groupby(x_axis)[column].mean().reset_index()
fig.add_trace(
go.Bar(
x=avg_precipitation[x_axis],
y=avg_precipitation[column],
name=f"{condition_value}",
marker=dict(color="blue" if condition_value == "historique" else "purple"),
)
)
concatenated_pessimist = concatenate_historic_forecast(historic, pessimist, cols_to_keep, "forecast scénario pessimiste")
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
concatenated_pessimist = concatenated_pessimist[concatenated_pessimist["period"]!="historique"]
for condition_value in concatenated_pessimist["period"].unique():
segment = concatenated_pessimist[concatenated_pessimist["period"] == condition_value]
avg_precipitation = segment.groupby(x_axis)[column].mean().reset_index()
fig.add_trace(
go.Bar(
x=avg_precipitation[x_axis],
y=avg_precipitation[column],
name=f"{condition_value}",
marker=dict(color="orange" if condition_value != "historique" else "blue"),
)
)
# Update layout for bar chart
fig.update_layout(
title=f"Moyenne de {column} par année",
xaxis_title="Année", # Set the x-axis title to Year
yaxis_title="Précipitation (mm)", # Set the y-axis title to Precipitation
barmode='group' # Group bars for different conditions
)
else:
# For other columns, continue with the line plot as before
for condition_value in concatenated_moderate["period"].unique():
segment = concatenated_moderate[concatenated_moderate["period"] == condition_value]
if condition_value == "historique":
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup='group1',
showlegend=False,
line=dict(color="blue" if condition_value == "historique" else "purple"),
)
)
else:
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup='group2',
showlegend=False,
line=dict(color="blue" if condition_value == "historique" else "purple", dash='dot'),
)
)
# Continue with pessimistic data as in the original function...
concatenated_pessimist = concatenate_historic_forecast(historic, pessimist, cols_to_keep, "forecast scénario pessimiste")
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
for condition_value in concatenated_pessimist["period"].unique():
segment = concatenated_pessimist[concatenated_pessimist["period"] == condition_value]
if condition_value == "historique":
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup='group1',
line=dict(color="blue" if condition_value == "historique" else "orange", dash='dot' if condition_value != "historique" else None),
)
)
else:
fig.add_trace(
go.Scatter(
x=segment[x_axis], # Years on x-axis
y=segment[column], # Precipitation values on y-axis
mode="lines",
name=f"{condition_value}",
legendgroup='group3',
line=dict(color="blue" if condition_value == "historique" else "orange", dash='dot' if condition_value != "historique" else None),
)
)
# Interpolation for the pessimistic scenario...
interpolation_pessimist = concatenated_pessimist[concatenated_pessimist[x_axis] > 2023]
interpolation_pessimist = interpolation_pessimist[interpolation_pessimist[x_axis] <= 2025]
fig.add_trace(
go.Scatter(
x=interpolation_pessimist[x_axis],
y=interpolation_pessimist[column].interpolate(),
mode="lines",
name = "forecast scénario pessimiste",
legendgroup='group3',
showlegend=False,
line=dict(color="orange", dash='dot'),
),
)
interpolation_moderate = concatenated_moderate[concatenated_moderate[x_axis] > 2023]
interpolation_moderate = interpolation_moderate[interpolation_moderate[x_axis] <= 2025]
fig.add_trace(
go.Scatter(
x=interpolation_moderate[x_axis],
y=interpolation_moderate[column].interpolate(),
mode="lines",
name = "forecast scénario modéré",
legendgroup='group2',
line=dict(color="purple", dash='dot'),
),
)
fig.update_layout(
title=f"Historique et Forecast pour {column}",
xaxis_title="Year", # Set the x-axis title to Year
yaxis_title=column, # Set the y-axis title to Precipitation
)
return fig
def aggregate_yearly(df, col_to_agg, operation="mean"):
df[col_to_agg] = df.groupby("year")[col_to_agg].transform(operation)
return df
def generate_plots(
moderate: pd.DataFrame,
historic: pd.DataFrame,
pessimist: pd.DataFrame,
x_axes: List[str],
cols_to_plot: List[str],
):
plots = []
for i, col in enumerate(cols_to_plot):
plots.append(visualize_climate(moderate, historic, pessimist, x_axes[i], col))
return plots
def get_plots():
cols_to_plot = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
]
cols_to_keep = [
"Precipitation (mm)",
"Near Surface Air Temperature (°C)",
"Surface Downwelling Shortwave Radiation (W/m²)",
"year",
"period",
]
x_axes = ["year"] * len(cols_to_plot)
latitude = 47
longitude = 5
start_year = 2000
end_year = 2025
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
historic = aggregate_hourly_weather_data(df)
historic = historic.reset_index()
historic = historic.rename(
columns={
"precipitation": "Precipitation (mm)",
"air_temperature_mean": "Near Surface Air Temperature (°C)",
"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)",
"index": "time",
}
)
moderate = get_forecast_data(latitude, longitude, "moderate")
pessimist = get_forecast_data(latitude, longitude, "pessimist")
moderate = moderate.rename(
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
)
moderate["time"] = pd.to_datetime(moderate["time"])
moderate = moderate.sort_values("time")
moderate["year"] = moderate["time"].dt.year
moderate["Precipitation (mm)"] = moderate["Precipitation (mm)"] * 31536000
pessimist = pessimist.rename(
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
)
pessimist["time"] = pd.to_datetime(pessimist["time"])
pessimist = pessimist.sort_values("time")
pessimist["year"] = pessimist["time"].dt.year
pessimist["Precipitation (mm)"] = pessimist["Precipitation (mm)"] * 31536000
pessimist["period"] = "forecast scénario pessimiste"
historic["year"] = historic["time"].dt.year
historic["Precipitation (mm)"] = historic["Precipitation (mm)"] * 8760.0
for col in cols_to_plot:
moderate = aggregate_yearly(moderate, col)
historic = aggregate_yearly(historic, col)
pessimist = aggregate_yearly(pessimist, col)
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
return plots
|