File size: 7,392 Bytes
399a98a
196cbb2
8ff070c
196cbb2
542edf7
196cbb2
542edf7
e8721da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff070c
 
e8721da
 
 
 
 
8ff070c
e8721da
 
 
 
 
 
399a98a
8ff070c
 
 
 
 
 
e8721da
 
 
 
 
 
 
 
ec9d9e0
e8721da
 
 
 
 
ec9d9e0
e8721da
196cbb2
e8721da
196cbb2
 
e8721da
 
 
196cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542edf7
 
196cbb2
 
 
 
ec9d9e0
542edf7
 
8ff070c
ec9d9e0
e8721da
542edf7
 
 
8ff070c
542edf7
 
8ff070c
 
542edf7
e8721da
196cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25d0ed1
 
 
 
 
 
d93b3a4
25d0ed1
 
 
 
 
 
 
 
 
 
 
d93b3a4
 
25d0ed1
 
 
 
 
d93b3a4
 
 
 
 
 
 
 
 
 
 
 
 
25d0ed1
d93b3a4
 
25d0ed1
 
 
 
196cbb2
d93b3a4
 
ba70fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d93b3a4
 
399a98a
d93b3a4
 
 
 
 
 
 
 
 
 
 
399a98a
 
d93b3a4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

from forecast import get_forecast_data
from retrieve_coefs_max_yield import get_coefs_Kc_Ky_and_max_yield
from utils.soil_utils import get_soil_properties


def calculate_ETx(Kc, ETo):
    """
    Calculate the maximum evapotranspiration (ETx) using the crop coefficient (Kc) and reference evapotranspiration (ETo).

    Parameters:
    Kc (float): Crop coefficient
    ETo (float): Reference evapotranspiration (mm)

    Returns:
    float: Maximum evapotranspiration (ETx) in mm
    """
    ETx = Kc * ETo
    return ETx


def calculate_ETa(ETx, soil_moisture, field_capacity, wilting_point, water_deficit, ETo):
    """
    Calculate the actual evapotranspiration (ETa) using the maximum evapotranspiration (ETx), soil moisture, field capacity, and wilting point.

    Parameters:
    ETx (float): Maximum evapotranspiration (mm)
    soil_moisture (Series): Current soil moisture content (%)
    field_capacity (float): Field capacity of the soil (%)
    wilting_point (float): Wilting point of the soil (%)

    Returns:
    float: Actual evapotranspiration (ETa) in mm
    """
    Ks = 1 - (water_deficit / ETo) # coef de stress hydrique = precipitation / et0
    Ks = Ks.clip(lower=0, upper=1)
    ETa = ETx * Ks

    ETa.loc[soil_moisture > field_capacity] = ETx.loc[soil_moisture > field_capacity]
    ETa.loc[soil_moisture < wilting_point] = 0

    return ETa


def calculate_yield_projection(Yx, ETx, ETa, Ky):
    """
    Calculate the agricultural yield projection using the FAO water production function.

    Parameters:
    Yx (float): Maximum yield (quintal/ha)
    ETx (float): Maximum evapotranspiration (mm)
    ETa (float): Actual evapotranspiration (mm)
    Ky (float): Yield response factor

    Returns:
    float: Projected yield (quintal/ha)
    """

    Ya = Yx * (1 - Ky * (1 - ETa / ETx))
    Ya.loc[ETx == 0] = 0

    return round(Ya, 2)


def add_cultural_coefs(monthly_forecast: pd.DataFrame, cultural_coefs: pd.DataFrame) -> pd.DataFrame:
    monthly_forecast["Kc"] = 0
    monthly_forecast["Ky"] = 0
    for month in range(1, 13):
        Kc = cultural_coefs["Kc"][cultural_coefs.Mois == month].iloc[0]
        Ky = cultural_coefs["Ky"][cultural_coefs.Mois == month].iloc[0]
        monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Kc"] = Kc
        monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Ky"] = Ky
    return monthly_forecast


def compute_yield_forecast(
        latitude: float,
        longitude: float,
        culture: str = "Colza d'hiver",
        region: str = "Bourgogne-Franche-Comté",
        scenario: str = "pessimist",
        shading_coef: float = 0.,
):
    monthly_forecast = get_forecast_data(latitude, longitude, scenario=scenario, shading_coef=shading_coef)

    cultural_coefs, max_yield = get_coefs_Kc_Ky_and_max_yield(culture, region)
    monthly_forecast = add_cultural_coefs(monthly_forecast, cultural_coefs)
    Kc = monthly_forecast["Kc"]
    Ky = monthly_forecast["Ky"]

    soil_properties = get_soil_properties(latitude, longitude)

    ETo = monthly_forecast["Evaporation (mm/day)"]

    ETx = calculate_ETx(Kc, ETo)

    ETa = calculate_ETa(
        ETx,
        monthly_forecast["Moisture in Upper Portion of Soil Column (kg m-2)"],
        soil_properties["field_capacity"],
        soil_properties["wilting_point"],
        water_deficit=monthly_forecast["Water Deficit (mm/day)"],
        ETo=ETo,
    )

    projected_yield = calculate_yield_projection(
        Yx=max_yield,
        ETx=ETx,
        ETa=ETa,
        Ky=Ky)
    monthly_forecast["Estimated yield (quintal/ha)"] = projected_yield

    return monthly_forecast


def get_annual_yield(monthly_forecast: pd.DataFrame) -> pd.Series:
    yield_forecast = pd.Series(
        index=monthly_forecast["time"],
        data=monthly_forecast["Estimated yield (quintal/ha)"].to_numpy(),
    )
    yield_forecast = yield_forecast.resample("1YE").mean()
    return yield_forecast


def plot_yield(
        latitude: float,
        longitude: float,
        culture: str = "Colza d'hiver",
        region: str = "Bourgogne-Franche-Comté",
        scenario: str = "pessimist",
        shading_coef: float = 0.2,
) -> plt.Figure:
    monthly_forecast = compute_yield_forecast(
        latitude=latitude,
        longitude=longitude,
        culture=culture,
        scenario=scenario,
        shading_coef=0.,
    )

    yield_forecast = get_annual_yield(monthly_forecast)
    n_years = 10
    years = 2025 + np.arange(len(yield_forecast))
    aggregated_years = years[years % n_years == 0]
    aggregated_forecasts = yield_forecast.rolling(n_years).sum()[years % n_years == 0]

    width = 3  # the width of the bars
    fig, ax = plt.subplots(layout='constrained')
    _ = ax.bar(aggregated_years, aggregated_forecasts, width, label="No shading")

    if shading_coef > 0:
        monthly_forecast_with_shading = compute_yield_forecast(
            latitude=latitude,
            longitude=longitude,
            culture=culture,
            scenario=scenario,
            shading_coef=shading_coef,
        )
        yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
        aggregated_forecasts_with_shading = yield_forecast_with_shading.rolling(n_years).sum()[years % n_years == 0]
        _ = ax.bar(aggregated_years + width, aggregated_forecasts_with_shading, width, label="20% shading")

    ax.legend()
    ax.set_xlabel("Année")
    ax.set_ylabel(f"Production agricole de {culture} estimée (quintal / ha)")
    ax.set_ylim(150)

    return fig

if __name__ == '__main__':
    latitude = 47
    longitude = 5
    cultures = ["Colza d'hiver", "Blé tendre d'hiver", "Orge d'hiver"]
    dfs = []
    for culture in cultures:
        scenario = "pessimist"
        shading_coef = 0.2
        monthly_forecast = compute_yield_forecast(
            latitude=47,
            longitude=5,
            culture=culture,
            scenario=scenario,
            shading_coef=0.,
        )

        monthly_forecast_with_shading = compute_yield_forecast(
            latitude=47,
            longitude=5,
            culture=culture,
            scenario=scenario,
            shading_coef=shading_coef,
        )

        fig = plot_yield(latitude, longitude, culture, scenario="pessimist", shading_coef=shading_coef)
        plt.show()

        # yield_forecast = get_annual_yield(monthly_forecast)
        # yield_forecast_df = yield_forecast.reset_index()
        # yield_forecast_df.columns = ["time", "yield_simple_forecast"]
        # yield_forecast_df["year"] = yield_forecast_df["time"].dt.year
        # yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
        # yield_forecast_with_shading_df = yield_forecast_with_shading.reset_index()
        # yield_forecast_with_shading_df.columns = ["time", "yield_with_shading_forecast"]
        # yield_forecast_with_shading_df["year"] = yield_forecast_with_shading_df["time"].dt.year
        # final_df = pd.merge(yield_forecast_df[["year", "yield_simple_forecast"]], yield_forecast_with_shading_df[["year", "yield_with_shading_forecast"]], on="year")
        # final_df["culture"] = culture
        # dfs.append(final_df)


    # result = pd.concat(dfs, axis=0)
    # result.to_csv("data/data_yield/rendement_forecast.csv", index=False)