Spaces:
Runtime error
Runtime error
Akram Sanad
commited on
Commit
·
1e9c075
1
Parent(s):
98a2104
adding libraries to requirements, creating a visualize notebook to work on plots
Browse files- requirements.txt +3 -1
- rpg_utils.ipynb +21 -151
- visualize.ipynb +31 -0
requirements.txt
CHANGED
@@ -14,4 +14,6 @@ nbformat>=4.2.0
|
|
14 |
pandas
|
15 |
openmeteo_requests
|
16 |
requests_cache
|
17 |
-
retry_requests
|
|
|
|
|
|
14 |
pandas
|
15 |
openmeteo_requests
|
16 |
requests_cache
|
17 |
+
retry_requests
|
18 |
+
fuzzywuzzy
|
19 |
+
plotly
|
rpg_utils.ipynb
CHANGED
@@ -2,9 +2,18 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"source": [
|
9 |
"import pandas as pd\n",
|
10 |
"from fuzzywuzzy import process\n",
|
@@ -39,23 +48,7 @@
|
|
39 |
},
|
40 |
{
|
41 |
"cell_type": "code",
|
42 |
-
"execution_count":
|
43 |
-
"metadata": {},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"df = pd.read_csv(\"./data_rpg/data_prepared_rpg.csv\")\n",
|
47 |
-
"\n",
|
48 |
-
"pop, sorted_df = get_popular_agriculture(\n",
|
49 |
-
" df,\n",
|
50 |
-
" \"Bretagne\",\n",
|
51 |
-
" 132.5\n",
|
52 |
-
" \n",
|
53 |
-
")"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"cell_type": "code",
|
58 |
-
"execution_count": 73,
|
59 |
"metadata": {},
|
60 |
"outputs": [
|
61 |
{
|
@@ -175,143 +168,20 @@
|
|
175 |
"104 Autres céréales 5176.17 "
|
176 |
]
|
177 |
},
|
178 |
-
"execution_count":
|
179 |
-
"metadata": {},
|
180 |
-
"output_type": "execute_result"
|
181 |
-
}
|
182 |
-
],
|
183 |
-
"source": [
|
184 |
-
"sorted_df"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": 71,
|
190 |
-
"metadata": {},
|
191 |
-
"outputs": [
|
192 |
-
{
|
193 |
-
"data": {
|
194 |
-
"text/html": [
|
195 |
-
"<div>\n",
|
196 |
-
"<style scoped>\n",
|
197 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
198 |
-
" vertical-align: middle;\n",
|
199 |
-
" }\n",
|
200 |
-
"\n",
|
201 |
-
" .dataframe tbody tr th {\n",
|
202 |
-
" vertical-align: top;\n",
|
203 |
-
" }\n",
|
204 |
-
"\n",
|
205 |
-
" .dataframe thead th {\n",
|
206 |
-
" text-align: right;\n",
|
207 |
-
" }\n",
|
208 |
-
"</style>\n",
|
209 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
210 |
-
" <thead>\n",
|
211 |
-
" <tr style=\"text-align: right;\">\n",
|
212 |
-
" <th></th>\n",
|
213 |
-
" <th>LIBELLE_CULTURE</th>\n",
|
214 |
-
" <th>LIBELLE_GROUPE_CULTURE</th>\n",
|
215 |
-
" <th>SURF_PARC</th>\n",
|
216 |
-
" </tr>\n",
|
217 |
-
" </thead>\n",
|
218 |
-
" <tbody>\n",
|
219 |
-
" <tr>\n",
|
220 |
-
" <th>2</th>\n",
|
221 |
-
" <td>Plantes aromatiques herbacées non pérennes (< ...</td>\n",
|
222 |
-
" <td>Autres cultures industrielles</td>\n",
|
223 |
-
" <td>277.71</td>\n",
|
224 |
-
" </tr>\n",
|
225 |
-
" <tr>\n",
|
226 |
-
" <th>14</th>\n",
|
227 |
-
" <td>Autre culture pérenne et jachère dans les bana...</td>\n",
|
228 |
-
" <td>Divers</td>\n",
|
229 |
-
" <td>5.31</td>\n",
|
230 |
-
" </tr>\n",
|
231 |
-
" <tr>\n",
|
232 |
-
" <th>26</th>\n",
|
233 |
-
" <td>Autre plante fourragère annuelle (ni légumineu...</td>\n",
|
234 |
-
" <td>Fourrage</td>\n",
|
235 |
-
" <td>118.12</td>\n",
|
236 |
-
" </tr>\n",
|
237 |
-
" <tr>\n",
|
238 |
-
" <th>37</th>\n",
|
239 |
-
" <td>Agrume</td>\n",
|
240 |
-
" <td>Vergers</td>\n",
|
241 |
-
" <td>3.18</td>\n",
|
242 |
-
" </tr>\n",
|
243 |
-
" <tr>\n",
|
244 |
-
" <th>49</th>\n",
|
245 |
-
" <td>Aïl</td>\n",
|
246 |
-
" <td>Légumes ou fleurs</td>\n",
|
247 |
-
" <td>49.67</td>\n",
|
248 |
-
" </tr>\n",
|
249 |
-
" <tr>\n",
|
250 |
-
" <th>61</th>\n",
|
251 |
-
" <td>Plantes médicinales et à parfum non pérennes (...</td>\n",
|
252 |
-
" <td>Autres cultures industrielles</td>\n",
|
253 |
-
" <td>29.14</td>\n",
|
254 |
-
" </tr>\n",
|
255 |
-
" <tr>\n",
|
256 |
-
" <th>78</th>\n",
|
257 |
-
" <td>Plante aromatique pérenne non arbustive ou arb...</td>\n",
|
258 |
-
" <td>Autres cultures industrielles</td>\n",
|
259 |
-
" <td>20.14</td>\n",
|
260 |
-
" </tr>\n",
|
261 |
-
" <tr>\n",
|
262 |
-
" <th>91</th>\n",
|
263 |
-
" <td>Artichaut</td>\n",
|
264 |
-
" <td>Légumes ou fleurs</td>\n",
|
265 |
-
" <td>2953.38</td>\n",
|
266 |
-
" </tr>\n",
|
267 |
-
" <tr>\n",
|
268 |
-
" <th>104</th>\n",
|
269 |
-
" <td>Avoine d’hiver</td>\n",
|
270 |
-
" <td>Autres céréales</td>\n",
|
271 |
-
" <td>5176.17</td>\n",
|
272 |
-
" </tr>\n",
|
273 |
-
" <tr>\n",
|
274 |
-
" <th>117</th>\n",
|
275 |
-
" <td>Avoine de printemps</td>\n",
|
276 |
-
" <td>Autres céréales</td>\n",
|
277 |
-
" <td>877.02</td>\n",
|
278 |
-
" </tr>\n",
|
279 |
-
" </tbody>\n",
|
280 |
-
"</table>\n",
|
281 |
-
"</div>"
|
282 |
-
],
|
283 |
-
"text/plain": [
|
284 |
-
" LIBELLE_CULTURE \\\n",
|
285 |
-
"2 Plantes aromatiques herbacées non pérennes (< ... \n",
|
286 |
-
"14 Autre culture pérenne et jachère dans les bana... \n",
|
287 |
-
"26 Autre plante fourragère annuelle (ni légumineu... \n",
|
288 |
-
"37 Agrume \n",
|
289 |
-
"49 Aïl \n",
|
290 |
-
"61 Plantes médicinales et à parfum non pérennes (... \n",
|
291 |
-
"78 Plante aromatique pérenne non arbustive ou arb... \n",
|
292 |
-
"91 Artichaut \n",
|
293 |
-
"104 Avoine d’hiver \n",
|
294 |
-
"117 Avoine de printemps \n",
|
295 |
-
"\n",
|
296 |
-
" LIBELLE_GROUPE_CULTURE SURF_PARC \n",
|
297 |
-
"2 Autres cultures industrielles 277.71 \n",
|
298 |
-
"14 Divers 5.31 \n",
|
299 |
-
"26 Fourrage 118.12 \n",
|
300 |
-
"37 Vergers 3.18 \n",
|
301 |
-
"49 Légumes ou fleurs 49.67 \n",
|
302 |
-
"61 Autres cultures industrielles 29.14 \n",
|
303 |
-
"78 Autres cultures industrielles 20.14 \n",
|
304 |
-
"91 Légumes ou fleurs 2953.38 \n",
|
305 |
-
"104 Autres céréales 5176.17 \n",
|
306 |
-
"117 Autres céréales 877.02 "
|
307 |
-
]
|
308 |
-
},
|
309 |
-
"execution_count": 71,
|
310 |
"metadata": {},
|
311 |
"output_type": "execute_result"
|
312 |
}
|
313 |
],
|
314 |
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
"sorted_df"
|
316 |
]
|
317 |
}
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/opt/miniconda3/envs/hackathon/lib/python3.13/site-packages/fuzzywuzzy/fuzz.py:11: UserWarning: Using slow pure-python SequenceMatcher. Install python-Levenshtein to remove this warning\n",
|
13 |
+
" warnings.warn('Using slow pure-python SequenceMatcher. Install python-Levenshtein to remove this warning')\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
"source": [
|
18 |
"import pandas as pd\n",
|
19 |
"from fuzzywuzzy import process\n",
|
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
+
"execution_count": 4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"metadata": {},
|
53 |
"outputs": [
|
54 |
{
|
|
|
168 |
"104 Autres céréales 5176.17 "
|
169 |
]
|
170 |
},
|
171 |
+
"execution_count": 4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
"metadata": {},
|
173 |
"output_type": "execute_result"
|
174 |
}
|
175 |
],
|
176 |
"source": [
|
177 |
+
"df = pd.read_csv(\"./data_rpg/data_prepared_rpg.csv\")\n",
|
178 |
+
"\n",
|
179 |
+
"pop, sorted_df = get_popular_agriculture(\n",
|
180 |
+
" df,\n",
|
181 |
+
" \"Bretagne\",\n",
|
182 |
+
" 132.5\n",
|
183 |
+
" \n",
|
184 |
+
")\n",
|
185 |
"sorted_df"
|
186 |
]
|
187 |
}
|
visualize.ipynb
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd #stress hydrique and rendement, besoin en eau\n",
|
10 |
+
"import plotly.graph_objects as go\n",
|
11 |
+
"\n",
|
12 |
+
"def visualize_climate():\n",
|
13 |
+
" figure = go.Figure()\n",
|
14 |
+
" "
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"metadata": {
|
19 |
+
"kernelspec": {
|
20 |
+
"display_name": "hackathon",
|
21 |
+
"language": "python",
|
22 |
+
"name": "python3"
|
23 |
+
},
|
24 |
+
"language_info": {
|
25 |
+
"name": "python",
|
26 |
+
"version": "3.13.2"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"nbformat": 4,
|
30 |
+
"nbformat_minor": 2
|
31 |
+
}
|