Spaces:
Runtime error
Runtime error
Akram Sanad
commited on
Commit
·
3d05be5
1
Parent(s):
d93b3a4
added ombrage
Browse files- visualize/visualize.py +45 -26
visualize/visualize.py
CHANGED
@@ -9,7 +9,7 @@ from data_pipelines.historical_weather_data import (
|
|
9 |
import os
|
10 |
from forecast import get_forecast_data
|
11 |
from compute_et0_adjusted import compute_et0
|
12 |
-
|
13 |
|
14 |
def water_deficit(df, latitude, longitude, shading_coef=0, historic=True):
|
15 |
preprocessed_data = df.copy()
|
@@ -38,32 +38,26 @@ def water_deficit(df, latitude, longitude, shading_coef=0, historic=True):
|
|
38 |
]
|
39 |
preprocessed_data["wind_speed"] = preprocessed_data["Near Surface Wind Speed (m/s)"]
|
40 |
|
41 |
-
# Convert 'time' to datetime and calculate Julian day
|
42 |
preprocessed_data["time"] = pd.to_datetime(
|
43 |
preprocessed_data["time"], errors="coerce"
|
44 |
)
|
45 |
preprocessed_data["month"] = preprocessed_data["time"].dt.month
|
46 |
preprocessed_data["day_of_year"] = preprocessed_data["time"].dt.dayofyear
|
47 |
|
48 |
-
# Compute ET0
|
49 |
et0 = compute_et0(preprocessed_data, latitude, longitude)
|
50 |
preprocessed_data["Evaporation (mm/day)"] = et0
|
51 |
preprocessed_data["Evaporation (mm/day)"] = preprocessed_data[
|
52 |
"Evaporation (mm/day)"
|
53 |
].clip(lower=0)
|
54 |
-
# Convert Precipitation from kg/m²/s to mm/day
|
55 |
|
56 |
preprocessed_data["Precipitation (mm/day)"] = (
|
57 |
86400 * preprocessed_data["Precipitation (kg m-2 s-1)"]
|
58 |
)
|
59 |
|
60 |
-
# Calculate Water Deficit: Water Deficit = ET0 - P + M
|
61 |
preprocessed_data["Water Deficit (mm/day)"] = (
|
62 |
preprocessed_data["Evaporation (mm/day)"]
|
63 |
- preprocessed_data["Precipitation (mm/day)"]
|
64 |
-
+ 4.5
|
65 |
)
|
66 |
-
|
67 |
return preprocessed_data
|
68 |
|
69 |
|
@@ -151,7 +145,6 @@ def visualize_climate(
|
|
151 |
)
|
152 |
|
153 |
else:
|
154 |
-
# For other columns, continue with the line plot as before
|
155 |
for condition_value in concatenated_moderate["period"].unique():
|
156 |
segment = concatenated_moderate[
|
157 |
concatenated_moderate["period"] == condition_value
|
@@ -285,6 +278,7 @@ def generate_plots(
|
|
285 |
pessimist: pd.DataFrame,
|
286 |
x_axes: List[str],
|
287 |
cols_to_plot: List[str],
|
|
|
288 |
):
|
289 |
plots = []
|
290 |
for i, col in enumerate(cols_to_plot):
|
@@ -297,7 +291,7 @@ def get_plots():
|
|
297 |
"Precipitation (mm)",
|
298 |
"Near Surface Air Temperature (°C)",
|
299 |
"Surface Downwelling Shortwave Radiation (W/m²)",
|
300 |
-
|
301 |
]
|
302 |
cols_to_keep: List[str] = [
|
303 |
"Precipitation (mm)",
|
@@ -315,31 +309,37 @@ def get_plots():
|
|
315 |
|
316 |
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
|
317 |
historic = aggregate_hourly_weather_data(df)
|
318 |
-
historic= historic.reset_index()
|
319 |
historic = historic.rename(
|
320 |
columns={
|
321 |
"precipitation": "Precipitation (mm)",
|
322 |
"air_temperature_mean": "Near Surface Air Temperature (°C)",
|
323 |
"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)",
|
324 |
-
|
325 |
}
|
326 |
)
|
327 |
historic["time"] = pd.to_datetime(historic["time"])
|
328 |
-
historic = historic.sort_values(
|
329 |
-
historic = historic[historic["time"]<"2025-01-01"]
|
330 |
-
historic = historic.rename(
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
-
historic = water_deficit(historic,latitude,longitude)
|
340 |
-
historic = historic.rename(
|
341 |
-
|
342 |
-
|
|
|
343 |
|
344 |
moderate = get_forecast_data(latitude, longitude, "moderate")
|
345 |
pessimist = get_forecast_data(latitude, longitude, "pessimist")
|
@@ -365,4 +365,23 @@ def get_plots():
|
|
365 |
historic = aggregate_yearly(historic, col)
|
366 |
pessimist = aggregate_yearly(pessimist, col)
|
367 |
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import os
|
10 |
from forecast import get_forecast_data
|
11 |
from compute_et0_adjusted import compute_et0
|
12 |
+
import copy
|
13 |
|
14 |
def water_deficit(df, latitude, longitude, shading_coef=0, historic=True):
|
15 |
preprocessed_data = df.copy()
|
|
|
38 |
]
|
39 |
preprocessed_data["wind_speed"] = preprocessed_data["Near Surface Wind Speed (m/s)"]
|
40 |
|
|
|
41 |
preprocessed_data["time"] = pd.to_datetime(
|
42 |
preprocessed_data["time"], errors="coerce"
|
43 |
)
|
44 |
preprocessed_data["month"] = preprocessed_data["time"].dt.month
|
45 |
preprocessed_data["day_of_year"] = preprocessed_data["time"].dt.dayofyear
|
46 |
|
|
|
47 |
et0 = compute_et0(preprocessed_data, latitude, longitude)
|
48 |
preprocessed_data["Evaporation (mm/day)"] = et0
|
49 |
preprocessed_data["Evaporation (mm/day)"] = preprocessed_data[
|
50 |
"Evaporation (mm/day)"
|
51 |
].clip(lower=0)
|
|
|
52 |
|
53 |
preprocessed_data["Precipitation (mm/day)"] = (
|
54 |
86400 * preprocessed_data["Precipitation (kg m-2 s-1)"]
|
55 |
)
|
56 |
|
|
|
57 |
preprocessed_data["Water Deficit (mm/day)"] = (
|
58 |
preprocessed_data["Evaporation (mm/day)"]
|
59 |
- preprocessed_data["Precipitation (mm/day)"]
|
|
|
60 |
)
|
|
|
61 |
return preprocessed_data
|
62 |
|
63 |
|
|
|
145 |
)
|
146 |
|
147 |
else:
|
|
|
148 |
for condition_value in concatenated_moderate["period"].unique():
|
149 |
segment = concatenated_moderate[
|
150 |
concatenated_moderate["period"] == condition_value
|
|
|
278 |
pessimist: pd.DataFrame,
|
279 |
x_axes: List[str],
|
280 |
cols_to_plot: List[str],
|
281 |
+
is_shaded: str = "",
|
282 |
):
|
283 |
plots = []
|
284 |
for i, col in enumerate(cols_to_plot):
|
|
|
291 |
"Precipitation (mm)",
|
292 |
"Near Surface Air Temperature (°C)",
|
293 |
"Surface Downwelling Shortwave Radiation (W/m²)",
|
294 |
+
"Water Deficit (mm/day)",
|
295 |
]
|
296 |
cols_to_keep: List[str] = [
|
297 |
"Precipitation (mm)",
|
|
|
309 |
|
310 |
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
|
311 |
historic = aggregate_hourly_weather_data(df)
|
312 |
+
historic = historic.reset_index()
|
313 |
historic = historic.rename(
|
314 |
columns={
|
315 |
"precipitation": "Precipitation (mm)",
|
316 |
"air_temperature_mean": "Near Surface Air Temperature (°C)",
|
317 |
"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)",
|
318 |
+
"index": "time",
|
319 |
}
|
320 |
)
|
321 |
historic["time"] = pd.to_datetime(historic["time"])
|
322 |
+
historic = historic.sort_values("time")
|
323 |
+
historic = historic[historic["time"] < "2025-01-01"]
|
324 |
+
historic = historic.rename(
|
325 |
+
columns={
|
326 |
+
"air_temperature_min": "Daily Minimum Near Surface Air Temperature (°C)",
|
327 |
+
"air_temperature_max": "Daily Maximum Near Surface Air Temperature (°C)",
|
328 |
+
"relative_humidity_min": "Relative Humidity_min",
|
329 |
+
"relative_humidity_max": "Relative Humidity_max",
|
330 |
+
"wind_speed": "Near Surface Wind Speed (m/s)",
|
331 |
+
"Precipitation (mm)": "Precipitation (kg m-2 s-1)",
|
332 |
+
}
|
333 |
+
)
|
334 |
+
historic["Precipitation (kg m-2 s-1)"] = (
|
335 |
+
historic["Precipitation (kg m-2 s-1)"] / 3600
|
336 |
+
)
|
337 |
|
338 |
+
historic = water_deficit(historic, latitude, longitude)
|
339 |
+
historic = historic.rename(
|
340 |
+
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
|
341 |
+
)
|
342 |
+
historic["Precipitation (mm)"] = historic["Precipitation (mm)"] * 3600
|
343 |
|
344 |
moderate = get_forecast_data(latitude, longitude, "moderate")
|
345 |
pessimist = get_forecast_data(latitude, longitude, "pessimist")
|
|
|
365 |
historic = aggregate_yearly(historic, col)
|
366 |
pessimist = aggregate_yearly(pessimist, col)
|
367 |
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
|
368 |
+
moderate = get_forecast_data(latitude, longitude, "moderate", shading_coef=0.2)
|
369 |
+
pessimist = get_forecast_data(latitude, longitude, "pessimist", shading_coef=0.2)
|
370 |
+
pessimist["year"] = pessimist["time"].dt.year
|
371 |
+
pessimist = pessimist[["year", "Water Deficit (mm/day)"]]
|
372 |
+
pessimist = aggregate_yearly(pessimist, 'Water Deficit (mm/day)')
|
373 |
+
plot_ombrage = copy.deepcopy(plots[-1])
|
374 |
+
plot_ombrage.add_trace(
|
375 |
+
go.Scatter(
|
376 |
+
x=pessimist["year"],
|
377 |
+
y=pessimist['Water Deficit (mm/day)'],
|
378 |
+
mode="lines",
|
379 |
+
name="forecast scénario pessimisste ombrage de 20%",
|
380 |
+
line=dict(
|
381 |
+
color="green",
|
382 |
+
dash="dot",
|
383 |
+
),
|
384 |
+
)
|
385 |
+
)
|
386 |
+
plots.append(plot_ombrage)
|
387 |
+
return plots, pessimist
|