Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
from huggingface_hub import login | |
# Fetch token from environment (automatically loaded from secrets) | |
hf_token = os.getenv("gemma") | |
login(hf_token) | |
# Initialize the client with your model | |
client = InferenceClient("hackergeek/gemma-finetuned") | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
# Build a prompt from the system message and conversation history | |
prompt = f"{system_message}\n" | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
prompt += f"User: {user_msg}\n" | |
if assistant_msg: | |
prompt += f"Assistant: {assistant_msg}\n" | |
prompt += f"User: {message}\nAssistant: " | |
# Call the text generation API with updated parameter name | |
response = client.text_generation( | |
model="hackergeek/gemma-finetuned", | |
prompt=prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
return response["generated_text"] | |
# Set up the Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |