Spaces:
Sleeping
Sleeping
File size: 2,785 Bytes
d93b988 d29b7da d93b988 d29b7da d93b988 d29b7da d93b988 d29b7da d93b988 d29b7da d93b988 d29b7da d93b988 d29b7da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import torch
import gradio as gr
import os
import logging
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from datasets import load_dataset
# Force CPU-only mode
os.environ["CUDA_VISIBLE_DEVICES"] = ""
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
# Configure logging
logging.basicConfig(level=logging.INFO)
def train():
try:
# Load model and tokenizer
model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="cpu",
trust_remote_code=True,
load_in_4bit=False # Disable quantization
)
# Add padding token
tokenizer.pad_token = tokenizer.eos_token
# Load sample dataset
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
# Tokenization function
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
)
tokenized_dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=["text"]
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False
)
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=1, # Reduced for testing
logging_dir="./logs",
fp16=False,
bf16=False,
use_cpu=True # Explicit CPU usage
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
data_collator=data_collator,
)
# Start training
logging.info("Starting training...")
trainer.train()
logging.info("Training completed!")
return "β
Training successful! Model saved."
except Exception as e:
logging.error(f"Error: {str(e)}")
return f"β Training failed: {str(e)}"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Phi-2 CPU Training")
start_btn = gr.Button("Start Training")
output = gr.Textbox()
start_btn.click(
fn=train,
outputs=output
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |