Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
import logging | |
import os | |
# Configure environment | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU | |
logging.basicConfig(level=logging.INFO) | |
def train(): | |
try: | |
# Load model and tokenizer | |
model_name = "microsoft/phi-2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="cpu", | |
trust_remote_code=True | |
) | |
# Load dataset | |
dataset = load_dataset("wikitext", "wikitext-2-raw-v1") | |
# Tokenization | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], | |
padding="max_length", | |
truncation=True, | |
max_length=256, | |
return_tensors="pt", | |
) | |
tokenized_dataset = dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=["text"] | |
) | |
# Training setup | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False | |
) | |
training_args = TrainingArguments( | |
output_dir="./results", | |
per_device_train_batch_size=2, | |
num_train_epochs=1, | |
logging_dir="./logs", | |
fp16=False, | |
report_to="none" | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
data_collator=data_collator, | |
) | |
# Start training | |
logging.info("Training started...") | |
trainer.train() | |
logging.info("Training completed!") | |
return "β Training successful" | |
except Exception as e: | |
logging.error(f"Error: {str(e)}") | |
return f"β Training failed: {str(e)}" | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Phi-2 CPU Training") | |
start_btn = gr.Button("Start Training") | |
output = gr.Textbox() | |
start_btn.click( | |
fn=train, | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |