Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
from huggingface_hub import login | |
# Fetch token from environment (automatically loaded from secrets) | |
hf_token = os.getenv("gemma3") | |
login(hf_token) | |
# Initialize the client with your model | |
client = InferenceClient("hackergeek98/gemma-finetuned") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Preparing the messages list | |
messages = [{"role": "system", "content": system_message}] | |
# Adding conversation history | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Adding the new user message | |
messages.append({"role": "user", "content": message}) | |
# Prepare the prompt for generation | |
prompt = " ".join([msg["content"] for msg in messages]) | |
# Call the Inference API for text generation (or chat completion if supported) | |
response = client.completion( | |
model="hackergeek98/gemma-finetuned", # Specify the model | |
prompt=prompt, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# The response will contain the generated text | |
return response["choices"][0]["text"] | |
# Gradio interface setup | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
# Run the app | |
if __name__ == "__main__": | |
demo.launch() | |