File size: 8,653 Bytes
36c5bbb 8711d89 36c5bbb 8711d89 36c5bbb 8711d89 36c5bbb 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 612a8c2 8711d89 36c5bbb 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 8711d89 612a8c2 36c5bbb 8711d89 36c5bbb 612a8c2 8711d89 612a8c2 36c5bbb 612a8c2 36c5bbb 612a8c2 36c5bbb 612a8c2 36c5bbb 612a8c2 8711d89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
import cv2
from scipy.fftpack import fft2, fftshift
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
import timm
import gradio as gr
class AttentionBlock(nn.Module):
def __init__(self, in_features):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Linear(in_features, max(in_features // 8, 1)),
nn.ReLU(),
nn.Linear(max(in_features // 8, 1), in_features),
nn.Sigmoid()
)
def forward(self, x):
attention_weights = self.attention(x)
return x * attention_weights
class AdvancedFaceDetectionModel(nn.Module):
def __init__(self, spectrum_length=181, lbp_n_bins=10):
super(AdvancedFaceDetectionModel, self).__init__()
self.efficientnet = timm.create_model('tf_efficientnetv2_b2', pretrained=True, num_classes=0)
for param in self.efficientnet.conv_stem.parameters():
param.requires_grad = False
for param in self.efficientnet.bn1.parameters():
param.requires_grad = False
self.glcm_fc = nn.Sequential(
nn.Linear(20, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
self.spectrum_conv = nn.Sequential(
nn.Conv1d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.AdaptiveAvgPool1d(1)
)
self.edge_conv = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.AdaptiveAvgPool2d((8, 8))
)
self.lbp_fc = nn.Sequential(
nn.Linear(lbp_n_bins, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Dropout(0.5)
)
image_feature_size = self.efficientnet.num_features
self.image_attention = AttentionBlock(image_feature_size)
self.glcm_attention = AttentionBlock(64)
self.spectrum_attention = AttentionBlock(64)
self.edge_attention = AttentionBlock(32 * 8 * 8)
self.lbp_attention = AttentionBlock(64)
total_features = image_feature_size + 64 + 64 + (32 * 8 * 8) + 64
self.fusion = nn.Sequential(
nn.Linear(total_features, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 1)
)
def forward(self, image, glcm_features, spectrum_features, edge_features, lbp_features):
image_features = self.efficientnet(image)
image_features = self.image_attention(image_features)
glcm_features = self.glcm_fc(glcm_features)
glcm_features = self.glcm_attention(glcm_features)
spectrum_features = self.spectrum_conv(spectrum_features.unsqueeze(1))
spectrum_features = spectrum_features.squeeze(2)
spectrum_features = self.spectrum_attention(spectrum_features)
edge_features = self.edge_conv(edge_features.unsqueeze(1))
edge_features = edge_features.view(edge_features.size(0), -1)
edge_features = self.edge_attention(edge_features)
lbp_features = self.lbp_fc(lbp_features)
lbp_features = self.lbp_attention(lbp_features)
combined_features = torch.cat(
(image_features, glcm_features, spectrum_features, edge_features, lbp_features), dim=1
)
output = self.fusion(combined_features)
return output.squeeze(1)
# 特征提取函数
def extract_glcm_features(image):
image_uint8 = (image * 255).astype(np.uint8)
image_uint8 = image_uint8 // 4
glcm = graycomatrix(
image_uint8,
distances=[1],
angles=[0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
levels=64,
symmetric=True,
normed=True
)
contrast = graycoprops(glcm, 'contrast').flatten()
dissimilarity = graycoprops(glcm, 'dissimilarity').flatten()
homogeneity = graycoprops(glcm, 'homogeneity').flatten()
energy = graycoprops(glcm, 'energy').flatten()
correlation = graycoprops(glcm, 'correlation').flatten()
features = np.hstack([contrast, dissimilarity, homogeneity, energy, correlation])
return features.astype(np.float32)
def analyze_spectrum(image, target_spectrum_length=181):
f = fft2(image)
fshift = fftshift(f)
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1e-8)
center = np.array(magnitude_spectrum.shape) // 2
y, x = np.indices(magnitude_spectrum.shape)
r = np.sqrt((x - center[1])**2 + (y - center[0])**2).astype(int)
radial_mean = np.bincount(r.ravel(), magnitude_spectrum.ravel()) / np.bincount(r.ravel())
if len(radial_mean) < target_spectrum_length:
radial_mean = np.pad(radial_mean, (0, target_spectrum_length - len(radial_mean)), 'constant')
else:
radial_mean = radial_mean[:target_spectrum_length]
return radial_mean.astype(np.float32)
def extract_edge_features(image):
image_uint8 = (image * 255).astype(np.uint8)
edges = cv2.Canny(image_uint8, 100, 200)
edges_resized = cv2.resize(edges, (64, 64), interpolation=cv2.INTER_AREA)
return edges_resized.astype(np.float32) / 255.0
def extract_lbp_features(image):
radius = 1
n_points = 8 * radius
METHOD = 'uniform'
lbp = local_binary_pattern(image, n_points, radius, METHOD)
n_bins = n_points + 2
hist, _ = np.histogram(lbp.ravel(), bins=n_bins, range=(0, n_bins), density=True)
return hist.astype(np.float32)
# 加载模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AdvancedFaceDetectionModel(spectrum_length=181, lbp_n_bins=10).to(device)
model.load_state_dict(torch.load('best_model.pth', map_location=device))
model.eval()
# 图像预处理转换
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_image(image):
"""
Process uploaded image and return prediction result
"""
if image is None:
return "Please upload an image"
# Convert image format
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Prepare image for feature extraction
np_image = image_tensor.cpu().numpy().squeeze(0).transpose(1, 2, 0)
np_image = np.clip(np_image, 0, 1)
# Convert to grayscale
gray_image = cv2.cvtColor((np_image * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
gray_image = gray_image.astype(np.float32) / 255.0
# Extract features
glcm_features = extract_glcm_features(gray_image)
spectrum_features = analyze_spectrum(gray_image)
edge_features = extract_edge_features(gray_image)
lbp_features = extract_lbp_features(gray_image)
# Convert to tensors and move to device
with torch.no_grad():
image_tensor = image_tensor.to(device)
glcm_features = torch.from_numpy(glcm_features).unsqueeze(0).to(device)
spectrum_features = torch.from_numpy(spectrum_features).unsqueeze(0).to(device)
edge_features = torch.from_numpy(edge_features).unsqueeze(0).to(device)
lbp_features = torch.from_numpy(lbp_features).unsqueeze(0).to(device)
# Model prediction
outputs = model(image_tensor, glcm_features, spectrum_features, edge_features, lbp_features)
prediction = torch.sigmoid(outputs).item()
# Return prediction result (corrected logic)
if prediction < 0.5: # Changed from > to <
return "Real Face"
else:
return "AI-Generated Face"
# Create Gradio interface
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.Text(label="Prediction Result"),
title="Face Authentication System",
description="Upload a face image to determine if it's a real face or an AI-generated face.",
examples=[
# Add example image paths here
],
article="""
This system uses advanced deep learning techniques to detect whether a face image is real or AI-generated.
The model analyzes various image features including texture patterns, frequency spectrum, and local binary patterns
to make its determination.
"""
)
# Launch the application
iface.launch() |