tess-2-demo / sdlm /data /data_collator.py
hamishivi's picture
commit
17ff0d8 verified
import random
from dataclasses import dataclass
from enum import Enum
from random import choices
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from sdlm.data.preprocessors import (
gpt_span_mask_batch,
insert_extra_paddings,
t5_random_spans_mask_batch,
uncond_span_mask_batch,
)
class Objective(Enum):
# Prefix language modeling like GPT style pretraining.
prefix = 1
# T5 objective with a range of 2 to 5 tokens as the span length, which masks about 15% of input tokens.
t5 = 2
# Aggressive denoising where approximately 50% of the input sequence is masked.
aggressive_t5 = 3
# Unconditional generation case.
unconditional = 4
# TODO: automize this one.
# TODO: these are for sequence length of 100, adapt for 200.
OBJECTIVE_SETTINGS = {
Objective.t5: [
{"mask_ratio": 0.15, "mean_mask_span_length": 8},
{"mask_ratio": 0.15, "mean_mask_span_length": 3},
],
Objective.aggressive_t5: [
{"mask_ratio": 0.5, "mean_mask_span_length": 8},
{"mask_ratio": 0.5, "mean_mask_span_length": 3},
{"mask_ratio": 0.5, "mean_mask_span_length": 48},
],
}
@dataclass
class SpanInfillingDataCollator:
"""
Data collator that will dynamically pad the inputs received.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
def __init__(
self,
mode,
data_args,
tokenizer: PreTrainedTokenizerBase,
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: str = "pt",
seed: int = 42,
eval_context_size: int = None,
):
self.tokenizer = tokenizer
self.padding = padding
self.max_length = max_length
self.pad_to_multiple_of = pad_to_multiple_of
self.return_tensors = return_tensors
self.conditional_generation = data_args.conditional_generation
self.extra_padding_ratio = data_args.extra_padding_ratio
self.ul2_max_mask_ratio = data_args.ul2_max_mask_ratio
self.rng = np.random.default_rng(seed)
self.eval_context_size = eval_context_size
self.mode = mode
if self.conditional_generation == "ul2_with_unconditional" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[
Objective.aggressive_t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
self.mask_generator[
Objective.unconditional
] = lambda batch: uncond_span_mask_batch(batch)
elif self.conditional_generation == "span_infilling":
self.mask_generator = lambda batch: t5_random_spans_mask_batch(
batch, data_args.mask_ratio, data_args.mean_mask_span_length, self.rng
)
elif self.conditional_generation == "prefix_lm":
self.mask_generator = lambda batch: gpt_span_mask_batch(
batch,
use_half_length_as_prefix_size=(mode == "eval"),
eval_context_size=eval_context_size,
)
elif self.conditional_generation == "prefix_with_unconditional":
self.mask_generator = {}
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
self.mask_generator[
Objective.unconditional
] = lambda batch: uncond_span_mask_batch(batch)
elif self.conditional_generation == "ul2" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[
Objective.aggressive_t5
] = lambda batch, setting: t5_random_spans_mask_batch(
batch, **setting, rng=self.rng
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
elif self.conditional_generation == "ul2_variable" and mode == "train":
self.mask_generator = {}
self.mask_generator[
Objective.t5
] = lambda batch, mask_ratio, mean_mask_span_length: t5_random_spans_mask_batch(
batch,
mask_ratio=mask_ratio,
mean_mask_span_length=mean_mask_span_length,
rng=self.rng,
)
self.mask_generator[Objective.prefix] = lambda batch: gpt_span_mask_batch(
batch
)
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
if self.extra_padding_ratio:
# Inserting random tokens uniformly, we do not modify start and end of
# sequence tokens.
for i in range(len(features)):
features[i]["input_ids"] = insert_extra_paddings(
self.rng,
features[i]["input_ids"],
self.tokenizer.pad_token_id,
self.extra_padding_ratio,
)
masks = {}
if self.conditional_generation in ["span_infilling", "prefix_lm"]:
masks = {"span_mask": self.mask_generator(features)}
elif (
self.conditional_generation == "ul2_with_unconditional"
and self.mode == "train"
):
objectives = [
Objective.unconditional,
Objective.t5,
Objective.prefix,
Objective.aggressive_t5,
]
weights = [0.25, 0.25, 0.25, 0.25]
objective = choices(objectives, weights)[0]
if objective in [Objective.t5, Objective.aggressive_t5]:
setting = choices(OBJECTIVE_SETTINGS[objective])[0]
masks = {"span_mask": self.mask_generator[objective](features, setting)}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif (
self.conditional_generation == "prefix_with_unconditional"
and self.mode == "train"
):
objectives = [
Objective.unconditional,
Objective.prefix,
]
weights = [0.5, 0.5]
objective = choices(objectives, weights)[0]
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.conditional_generation == "ul2" and self.mode == "train":
objectives = [Objective.t5, Objective.prefix, Objective.aggressive_t5]
weights = [0.25, 0.25, 0.25]
objective = choices(objectives, weights)[0]
if objective in [Objective.t5, Objective.aggressive_t5]:
setting = choices(OBJECTIVE_SETTINGS[objective])[0]
masks = {"span_mask": self.mask_generator[objective](features, setting)}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.conditional_generation == "ul2_variable" and self.mode == "train":
objectives = [Objective.t5, Objective.prefix]
weights = [0.5, 0.5]
objective = choices(objectives, weights)[0]
if objective == objective.t5:
# Here we assume the length is the same for all data in a batch.
length = len(features[0]["input_ids"])
min_ratio = 1.0 / length
mask_ratio = random.uniform(min_ratio, self.ul2_max_mask_ratio)
mean_mask_span_length = int(random.uniform(1, mask_ratio * length))
masks = {
"span_mask": self.mask_generator[objective](
features, mask_ratio, mean_mask_span_length
)
}
else:
masks = {"span_mask": self.mask_generator[objective](features)}
elif self.mode == "eval" and self.conditional_generation in [
"ul2",
"ul2_with_unconditional",
"ul2_variable",
"prefix_with_unconditional",
]:
masks = {
"span_mask": gpt_span_mask_batch(
features,
use_half_length_as_prefix_size=True,
eval_context_size=self.eval_context_size,
)
}
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
return_attention_mask=False,
)
# we just need input_ids
batch = {"input_ids": batch["input_ids"]}
return {**batch, **masks}
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
input_target = [input + target for input, target in zip(input_ids, labels)]
features = self.tokenizer.pad(
{"input_ids": input_target},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
batch_length = features["input_ids"].shape[1]
masks = [
len(input) * [False] + (batch_length - len(input)) * [True]
for input in input_ids
]
features["span_mask"] = torch.tensor(masks)
return features
@dataclass
class DataCollatorForCausalLMSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
use_sep: Optional[bool] = False
# \nsummary:
# LLAMA_SEP: Tuple[int] = (13, 7727, 29901)
# MISTRAL_SEP: Tuple[int] = (13, 3499, 28747)
# <sep>
LLAMA_SEP: Tuple[int] = (529, 19570, 29958)
MISTRAL_SEP: Tuple[int] = (523, 21571, 28767)
def __call__(self, features):
if "attention_mask" in features:
features.pop("attention_mask")
# remove eos from input_ids
input_ids = [feature["input_ids"][:-1] for feature in features]
# remove sos from labels
labels = [feature["labels"][1:] for feature in features]
SEP = []
if self.use_sep:
# guard incomplete code path
# TODO: add use_sep to arguments
assert False
tokenizer_name = self.tokenizer.name_or_path.lower()
if "mistral" in tokenizer_name:
SEP = list(self.MISTRAL_SEP)
elif "llama" in tokenizer_name:
SEP = list(self.LLAMA_SEP)
else:
raise ValueError("Unrecognized tokenizer.name_or_path")
input_target = [
input + SEP + target for input, target in zip(input_ids, labels)
]
else:
input_target = [input + target for input, target in zip(input_ids, labels)]
features = self.tokenizer.pad(
{"input_ids": input_target},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=True,
)
batch_length = features["input_ids"].shape[1]
masks = []
pad_lengths = []
context_lengths = []
for input, label in zip(input_ids, labels):
context_length = len(input)
if self.use_sep:
context_length += len(SEP)
label_length = len(label)
pad_length = batch_length - context_length - label_length
if self.tokenizer.padding_side == "right":
raise NotImplementedError
mask = (context_length + pad_length) * [False] + label_length * [True]
masks.append(mask)
pad_lengths.append(pad_length)
context_lengths.append(context_length)
features["labels"] = torch.where(
torch.tensor(masks), features["input_ids"], -100
)
features["pad_lengths"] = torch.tensor(pad_lengths)
features["context_lengths"] = torch.tensor(context_lengths)
return features
# custom collator for the multi-turn input format.
@dataclass
class DataCollatorForMultiTurnSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
features = self.tokenizer.pad(
{"input_ids": input_ids},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
# pad labels out for easy mask
label_features = self.tokenizer.pad(
{"input_ids": labels},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)["input_ids"]
# true wherever we have an actual label
features["span_mask"] = torch.where(label_features == -100, False, True)
return features
# custom collator for the multi-turn input format with causal
@dataclass
class DataCollatorForCausalMultiTurnSeq2Seq:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
features = self.tokenizer.pad(
{"input_ids": input_ids},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)
# reinstate attention mask
features["attention_mask"] = (
features["input_ids"] != self.tokenizer.pad_token_id
)
# pad labels out for easy mask
label_features = self.tokenizer.pad(
{"input_ids": labels},
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
return_attention_mask=False,
)["input_ids"]
features["labels"] = label_features
return features