tess-2-demo / sdlm /run_glue.py
hamishivi's picture
commit
17ff0d8 verified
""" Finetuning the library models for sequence classification on GLUE."""
import logging
import os
import random
import sys
import datasets
import numpy as np
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from .arguments import get_args
from .data.data_collator import DataCollatorForSeq2Seq
from .data.data_utils import split_glue
from .data.postprocessors import get_post_processor
from .data.sni.sni_collator import DataCollatorForNI
from .inference.inference_utils import process_text
from .metrics.metrics import get_glue_metrics
from .models import load_model
from .schedulers import TokenWiseSimplexDDPMScheduler
from .trainers.trainer_diffusion import DiffusionTrainer
from .utils import lmap
# This is computed with scripts/compute_max_tokens_of_labels.py
MAX_LABEL_LENGTH = 5
check_min_version("4.25.0")
require_version("datasets>=1.8.0")
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
"sni": ("inputs", None),
}
task_to_metric = {
"cola": "matthews_correlation",
"mnli": "accuracy",
"mrpc": "combined_score",
"qnli": "accuracy",
"qqp": "combined_score",
"rte": "accuracy",
"sst2": "accuracy",
"stsb": "combined_score",
"wnli": "accuracy",
"sni": "rouge",
}
logger = logging.getLogger(__name__)
def main():
# parse args
model_args, data_args, training_args, diffusion_args = get_args()
assert data_args.dataset_name is not None
data_args.dataset_name = data_args.dataset_name.lower()
if data_args.dataset_name not in task_to_keys.keys():
raise ValueError(
"Unknown task, you should pick one in " + ",".join(task_to_keys.keys())
)
if training_args.checkpoint_best_model:
# TODO: ask which one they report and use the one needed here.
# TODO: test both simplex and logits.
training_args.metric_for_best_model = (
"pred_texts_from_simplex_masked_" + task_to_metric[data_args.dataset_name]
)
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_glue", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# load tokenizer early
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Downloading and loading a dataset from the hub.
if data_args.dataset_name == "sni":
raw_datasets = load_dataset(
"sdlm/data/sni/sni_dataset.py",
cache_dir=model_args.cache_dir,
trust_remote_code=True,
use_auth_token=True if model_args.use_auth_token else None,
)
# sni has validation / test
raw_datasets["validation"] = raw_datasets["test"]
# map into simple (inputs, labels) format
# makes easy to explore few-shot formats if we want.
collator = DataCollatorForNI(
tokenizer,
text_only=True,
num_pos_examples=0,
max_source_length=data_args.max_source_length,
max_target_length=data_args.max_target_length,
)
raw_datasets = raw_datasets.map(
collator,
batched=False,
num_proc=12, # lazy hardcode
# load_from_cache_file=False,
)
else:
raw_datasets = load_dataset(
"glue",
data_args.dataset_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# for glue tasks, grab the string labels
# currently not working in eval TODO: bugfix this
# if data_args.dataset_name != "sni":
# if data_args.dataset_name != "stsb":
# label_list = raw_datasets["train"].features["label"].names
# raw_datasets = raw_datasets.cast_column(
# "label", Value(dtype="string", id=None)
# )
# # map labels to the strings
# raw_datasets = raw_datasets.map(
# lambda x: {"label": label_list[int(x["label"])].replace("_", " ")},
# )
# else:
# # stsb in t5 style - round stsb values
# label_list = [str(x / 5.0) for x in range(26)]
# raw_datasets = raw_datasets.cast_column(
# "label", Value(dtype="string", id=None)
# )
# raw_datasets = raw_datasets.map(
# lambda x: {"label": f"{(round(float(x['label'])*5) / 5):.1f}"},
# )
# Split dataset, since test sets of GLUE do not have the labels.
if data_args.split_glue:
raw_datasets = split_glue(
raw_datasets, data_args.dataset_name, data_args.glue_split_seed
)
elif data_args.dataset_name == "mnli":
raw_datasets["validation"] = raw_datasets[
"validation_matched"
] # mismatched is for reverse, and for normal is matched.
raw_datasets["test"] = raw_datasets["test_matched"]
# shuffle our datasets with the split_seed (split glue does this but otherwise not.)
raw_datasets = raw_datasets.shuffle(data_args.glue_split_seed)
# load model
tokenizer, model = load_model(
model_args, data_args, training_args, diffusion_args, logger
)
# Preprocessing the raw_datasets
sentence1_key, sentence2_key = task_to_keys[data_args.dataset_name]
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# TODO: here max_length should be max_length minus length of labels.
# TODO: this is for now, but maybe compute one max_length as a whole.
# Tokenize the labels.
targets = [str(label) for label in examples["label"]]
# we have to set this, truncate.
max_sni_lengths = 128
labels = tokenizer(
text_target=targets,
max_length=max_seq_length
if data_args.dataset_name != "sni"
else max_sni_lengths,
padding=False,
truncation=True,
)
# sni has long responses, while glue is all classification
max_label_length = (
MAX_LABEL_LENGTH if data_args.dataset_name != "sni" else max_sni_lengths
)
args = (
(examples[sentence1_key],)
if sentence2_key is None
else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(
*args,
padding=False,
max_length=max_seq_length - max_label_length,
truncation=True,
)
result["labels"] = labels["input_ids"]
return result
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
num_proc=data_args.preprocessing_num_workers,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits):
return logits.argmax(dim=-1)
if (
training_args.do_predict
or data_args.dataset_name is not None
or data_args.test_file is not None
):
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_datasets = (
[raw_datasets["test"]]
if data_args.dataset_name != "mnli"
else [raw_datasets["test_matched"]]
)
if data_args.dataset_name == "mnli":
predict_datasets.append(raw_datasets["test_mismatched"])
if data_args.max_predict_samples is not None:
for i in range(len(predict_datasets)):
max_predict_samples = min(
len(predict_datasets[i]), data_args.max_predict_samples
)
predict_datasets[i] = predict_datasets[i].select(
range(max_predict_samples)
)
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Get the metric function
task_metrics = get_glue_metrics(data_args.dataset_name)
def postprocess_text(texts):
return lmap(str.strip, texts)
# TODO: we maybe need to pad till the sentences, and then predict the tokens we need for the few ones we need.
def compute_metrics(results):
post_processor = get_post_processor(data_args.dataset_name)
# TODO: we need to change the metrics here.
keys = ["pred_texts_from_simplex_masked", "pred_texts_from_logits_masked"]
decoded_labels = postprocess_text(process_text(results["gold_texts_masked"]))
if post_processor is not None:
decoded_labels = [post_processor(x) for x in decoded_labels]
metrics = {}
for key in keys:
decoded_preds = postprocess_text(process_text(results[key]))
if post_processor is not None:
decoded_preds = [post_processor(x) for x in decoded_preds]
key_metrics = {}
for metric in task_metrics:
key_metrics.update(
metric(predictions=decoded_preds, targets=decoded_labels)
)
if len(key_metrics) > 1:
key_metrics["combined_score"] = np.mean(
list(key_metrics.values())
).item()
key_metrics = {f"{key}_{k}": v for k, v in key_metrics.items()}
metrics.update(key_metrics)
return metrics
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
# we already did the padding.
# Data collator. To be consistent with the run_mlm.py we need to add `mode`.
data_collator = lambda mode: DataCollatorForSeq2Seq( # noqa: E731
tokenizer,
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus.
padding="max_length" if data_args.pad_to_max_length else True,
max_length=data_args.max_seq_length,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# init schedulers
noise_scheduler = TokenWiseSimplexDDPMScheduler(
num_train_timesteps=diffusion_args.num_diffusion_steps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
)
inference_noise_schedulers = [
TokenWiseSimplexDDPMScheduler(
num_train_timesteps=timesteps,
beta_schedule=diffusion_args.beta_schedule,
simplex_value=diffusion_args.simplex_value,
clip_sample=diffusion_args.clip_sample,
device=training_args.device,
)
for timesteps in diffusion_args.num_inference_diffusion_steps
]
# Initialize our Trainer
trainer = DiffusionTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if (training_args.do_eval or training_args.do_predict)
else None,
noise_scheduler=noise_scheduler,
diffusion_args=diffusion_args,
data_args=data_args,
inference_noise_schedulers=inference_noise_schedulers,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# We will load the best model here to avoid an issue when do_train is not set.
if training_args.load_states_in_eval_from_model_path and not training_args.do_train:
trainer.state = TrainerState.load_from_json(
os.path.join(model_args.model_name_or_path, "trainer_state.json")
)
if (
training_args.load_best_model_at_end
and trainer.state.best_model_checkpoint is not None
):
checkpoint_path = trainer.state.best_model_checkpoint
else:
checkpoint_path = model_args.model_name_or_path
trainer._load_from_checkpoint(checkpoint_path)
trainer._load_rng_state(checkpoint_path)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Test ***")
for i, predict_dataset in enumerate(predict_datasets):
metric_key_prefix = f"test_{i}"
metrics = trainer.evaluate(
eval_dataset=predict_dataset, metric_key_prefix=metric_key_prefix
)
max_predict_samples = (
data_args.max_predict_samples
if data_args.max_predict_samples is not None
else len(predict_dataset)
)
metrics["test_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics(metric_key_prefix, metrics)
trainer.save_metrics(metric_key_prefix, metrics)
if __name__ == "__main__":
main()