Spaces:
Sleeping
Sleeping
""" | |
Fine-tuning the library models for sequence to sequence. | |
""" | |
import logging | |
import os | |
import sys | |
import datasets | |
import evaluate | |
import transformers | |
from transformers import set_seed | |
from transformers.trainer_callback import TrainerState | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from .arguments import get_args | |
from .data.data_collator import DataCollatorForSeq2Seq | |
from .data.data_utils import load_data | |
from .data.postprocessors import postprocess_text_for_metric | |
from .inference.inference_utils import process_text | |
from .models import load_model | |
from .schedulers import TokenWiseSimplexDDPMScheduler | |
from .trainers.trainer_diffusion import DiffusionTrainer | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.25.0") | |
require_version("datasets>=1.8.0") | |
logger = logging.getLogger(__name__) | |
summarization_name_mapping = { | |
"amazon_reviews_multi": ("review_body", "review_title"), | |
"big_patent": ("description", "abstract"), | |
"cnn_dailymail": ("article", "highlights"), | |
"orange_sum": ("text", "summary"), | |
"pn_summary": ("article", "summary"), | |
"psc": ("extract_text", "summary_text"), | |
"samsum": ("dialogue", "summary"), | |
"thaisum": ("body", "summary"), | |
"xglue": ("news_body", "news_title"), | |
"xsum": ("document", "summary"), | |
"wiki_summary": ("article", "highlights"), | |
"multi_news": ("document", "summary"), | |
} | |
def main(): | |
# parse args | |
model_args, data_args, training_args, diffusion_args = get_args() | |
assert ( | |
data_args.max_target_length + data_args.max_source_length | |
<= data_args.max_seq_length | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
datasets.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if ( | |
os.path.isdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif ( | |
last_checkpoint is not None and training_args.resume_from_checkpoint is None | |
): | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Set seed before initializing model. | |
set_seed(training_args.seed) | |
# load data | |
raw_datasets = load_data(data_args, model_args) | |
# load model | |
tokenizer, model = load_model( | |
model_args, data_args, training_args, diffusion_args, logger | |
) | |
total_seq2seq_length = data_args.max_source_length + data_args.max_target_length | |
if ( | |
hasattr(model.config, "max_position_embeddings") | |
and model.config.max_position_embeddings < total_seq2seq_length | |
): | |
if model_args.resize_position_embeddings is None: | |
logger.warning( | |
"Increasing the model's number of position embedding vectors from" | |
f" {model.config.max_position_embeddings} to {total_seq2seq_length}." | |
) | |
# position_ids starts from `padding_idx + 1` (padding_index=1) and we therefore requires | |
# 2 more position embeddings. | |
model.resize_position_embeddings( | |
total_seq2seq_length + 2, | |
with_alternatation=model_args.resize_position_embeddings_alternatively, | |
) | |
elif model_args.resize_position_embeddings: | |
model.resize_position_embeddings( | |
total_seq2seq_length + 2, | |
with_alternatation=model_args.resize_position_embeddings_alternatively, | |
) | |
else: | |
raise ValueError( | |
f"`max_source_length`+`max_target_length` is set to {total_seq2seq_length}, but the model only has" | |
f" {model.config.max_position_embeddings} position encodings. Consider either reducing" | |
f" `max_source_length`+`max_target_length` to {model.config.max_position_embeddings} or to automatically resize the" | |
" model's position encodings by passing `--resize_position_embeddings`." | |
) | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = raw_datasets["train"].column_names | |
elif training_args.do_eval: | |
column_names = raw_datasets["validation"].column_names | |
elif training_args.do_predict: | |
column_names = raw_datasets["test"].column_names | |
else: | |
logger.info( | |
"There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`." | |
) | |
return | |
# Get the column names for input/target. | |
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) | |
assert dataset_columns is not None, "You need to provide the columns names." | |
text_column, summary_column = dataset_columns[0], dataset_columns[1] | |
# Temporarily set max_target_length for training. | |
max_target_length = data_args.max_target_length | |
""" | |
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
logger.warning( | |
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" | |
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" | |
) | |
""" | |
def preprocess_function(examples): | |
# remove pairs where at least one record is None | |
inputs, targets = [], [] | |
for i in range(len(examples[text_column])): | |
if examples[text_column][i] and examples[summary_column][i]: | |
inputs.append(examples[text_column][i]) | |
targets.append(examples[summary_column][i]) | |
# TODO: we need to process first the target, then cut the inputs to the max_length-target length to use the | |
# maximum number of tokens. | |
model_inputs = tokenizer( | |
inputs, | |
max_length=data_args.max_source_length, | |
padding=False, | |
truncation=True, | |
) | |
# Tokenize targets with the `text_target` keyword argument | |
labels = tokenizer( | |
text_target=targets, | |
max_length=max_target_length, | |
padding=False, | |
truncation=True, | |
) | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
if training_args.do_train: | |
if "train" not in raw_datasets: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = raw_datasets["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
with training_args.main_process_first(desc="train dataset map pre-processing"): | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
if training_args.do_eval: | |
max_target_length = data_args.val_max_target_length | |
if "validation" not in raw_datasets: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = raw_datasets["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
with training_args.main_process_first( | |
desc="validation dataset map pre-processing" | |
): | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
def preprocess_logits_for_metrics(logits): | |
return logits.argmax(dim=-1) | |
if training_args.do_predict: | |
max_target_length = data_args.val_max_target_length | |
if "test" not in raw_datasets: | |
raise ValueError("--do_predict requires a test dataset") | |
test_dataset = raw_datasets["test"] | |
if data_args.max_predict_samples is not None: | |
max_predict_samples = min(len(test_dataset), data_args.max_predict_samples) | |
test_dataset = test_dataset.select(range(max_predict_samples)) | |
with training_args.main_process_first( | |
desc="prediction dataset map pre-processing" | |
): | |
test_dataset = test_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
# TODO: we may want to add predict back. | |
# Data collator. To be consistent with the run_mlm.py we need to add `mode`. | |
data_collator = lambda mode: DataCollatorForSeq2Seq( # noqa: E731 | |
tokenizer, | |
# Note that if you do not use `pad_to_max_length`, this becomes very slow on multi-gpus. | |
padding="max_length" if data_args.pad_to_max_length else True, | |
max_length=data_args.max_seq_length, | |
pad_to_multiple_of=8 if training_args.fp16 else None, | |
) | |
noise_scheduler = TokenWiseSimplexDDPMScheduler( | |
num_train_timesteps=diffusion_args.num_diffusion_steps, | |
beta_schedule=diffusion_args.beta_schedule, | |
simplex_value=diffusion_args.simplex_value, | |
clip_sample=diffusion_args.clip_sample, | |
device=training_args.device, | |
multiply_factor=diffusion_args.multiply_factor, | |
) | |
inference_noise_schedulers = [ | |
TokenWiseSimplexDDPMScheduler( | |
num_train_timesteps=timesteps, | |
beta_schedule=diffusion_args.beta_schedule, | |
simplex_value=diffusion_args.simplex_value, | |
clip_sample=diffusion_args.clip_sample, | |
device=training_args.device, | |
multiply_factor=diffusion_args.multiply_factor, | |
) | |
for timesteps in diffusion_args.num_inference_diffusion_steps | |
] | |
# Metric | |
metric = evaluate.load("rouge") | |
def compute_metrics(results): | |
keys = ["pred_texts_from_simplex_masked", "pred_texts_from_logits_masked"] | |
metrics = {} | |
for key in keys: | |
decoded_preds = ( | |
process_text(results[key]) | |
if not data_args.skip_special_tokens | |
else results[key] | |
) | |
# Note that since decoded_labels is getting updated after post-process, we | |
# need to compute it here for each key. | |
decoded_labels = ( | |
process_text(results["gold_texts_masked"]) | |
if not data_args.skip_special_tokens | |
else results["gold_texts_masked"] | |
) | |
decoded_preds, decoded_labels = postprocess_text_for_metric( | |
"rouge", decoded_preds, decoded_labels | |
) | |
key_metrics = metric.compute( | |
predictions=decoded_preds, references=decoded_labels, use_stemmer=True | |
) | |
key_metrics = {k: round(v * 100, 4) for k, v in key_metrics.items()} | |
key_metrics = {f"{key}_{k}": v for k, v in key_metrics.items()} | |
metrics.update(key_metrics) | |
return metrics | |
# Initialize our Trainer | |
trainer = DiffusionTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset if training_args.do_train else None, | |
eval_dataset=eval_dataset if training_args.do_eval else None, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics | |
if (training_args.do_eval or training_args.do_predict) | |
else None, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics | |
if (training_args.do_eval or training_args.do_predict) | |
else None, | |
noise_scheduler=noise_scheduler, | |
diffusion_args=diffusion_args, | |
data_args=data_args, | |
inference_noise_schedulers=inference_noise_schedulers, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() # Saves the tokenizer too for easy upload | |
metrics = train_result.metrics | |
max_train_samples = ( | |
data_args.max_train_samples | |
if data_args.max_train_samples is not None | |
else len(train_dataset) | |
) | |
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
trainer.log_metrics("train", metrics) | |
trainer.save_metrics("train", metrics) | |
trainer.save_state() | |
# We will load the best model here to avoid an issue when do_train is not set. | |
if training_args.load_states_in_eval_from_model_path and not training_args.do_train: | |
trainer.state = TrainerState.load_from_json( | |
os.path.join(model_args.model_name_or_path, "trainer_state.json") | |
) | |
if ( | |
training_args.load_best_model_at_end | |
and trainer.state.best_model_checkpoint is not None | |
): | |
checkpoint_path = trainer.state.best_model_checkpoint | |
else: | |
checkpoint_path = model_args.model_name_or_path | |
trainer._load_from_checkpoint(checkpoint_path) | |
trainer._load_rng_state(checkpoint_path) | |
# Evaluation | |
results = {} | |
# max_length = ( | |
# training_args.generation_max_length | |
# if training_args.generation_max_length is not None | |
# else data_args.val_max_target_length | |
# ) | |
# num_beams = ( | |
# data_args.num_beams | |
# if data_args.num_beams is not None | |
# else training_args.generation_num_beams | |
# ) | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
# TODO: num_beans should be added for ours as well. | |
# metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") | |
metrics = trainer.evaluate() | |
max_eval_samples = ( | |
data_args.max_eval_samples | |
if data_args.max_eval_samples is not None | |
else len(eval_dataset) | |
) | |
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
if training_args.do_predict: | |
logger.info("*** Test ***") | |
metrics = trainer.evaluate(test_dataset, metric_key_prefix="test") | |
max_predict_samples = ( | |
data_args.max_predict_samples | |
if data_args.max_predict_samples is not None | |
else len(test_dataset) | |
) | |
metrics["test_samples"] = min(max_predict_samples, len(test_dataset)) | |
trainer.log_metrics("test", metrics) | |
trainer.save_metrics("test", metrics) | |
# TODO: we may want to add predict part back. | |
return results | |
if __name__ == "__main__": | |
main() | |