hamzaherry's picture
Update app.py
472cb47 verified
raw
history blame
1.98 kB
import os
import faiss
import streamlit as st
from PyPDF2 import PdfReader
from sentence_transformers import SentenceTransformer
from groq import Groq
from dotenv import load_dotenv
# Initialize Groq client
client = Groq(api_key="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")
# Load Sentence Transformer model
model = SentenceTransformer("all-MiniLM-L6-v2")
# Initialize FAISS
dimension = 384 # Embedding size for the Sentence Transformer model
index = faiss.IndexFlatL2(dimension)
# Function to process PDF and create embeddings
def process_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
chunks = [text[i:i + 500] for i in range(0, len(text), 500)] # Chunk into 500-char blocks
embeddings = model.encode(chunks)
index.add(embeddings)
return chunks, embeddings
# Function to query FAISS and generate a response
def query_model(query):
query_vector = model.encode([query])
_, indices = index.search(query_vector, k=3) # Top 3 similar chunks
response_chunks = [stored_chunks[idx] for idx in indices[0]]
context = " ".join(response_chunks)
# Groq API call
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Context: {context}\n\nQuery: {query}",
}
],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
# Streamlit app
st.title("RAG-based PDF Question Answering")
st.write("Upload a PDF and ask questions based on its content.")
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
if uploaded_file:
stored_chunks, _ = process_pdf(uploaded_file)
st.success("PDF processed and embeddings created.")
query = st.text_input("Ask a question:")
if query:
answer = query_model(query)
st.write("### Answer:")
st.write(answer)