Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,14 @@ from PyPDF2 import PdfReader
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from groq import Groq
|
7 |
from dotenv import load_dotenv
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Initialize Groq client
|
12 |
client = Groq(api_key="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")
|
@@ -18,16 +24,27 @@ model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
18 |
dimension = 384 # Embedding size for the Sentence Transformer model
|
19 |
index = faiss.IndexFlatL2(dimension)
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Function to query FAISS and generate a response
|
33 |
def query_model(query):
|
@@ -50,15 +67,10 @@ def query_model(query):
|
|
50 |
|
51 |
# Streamlit app
|
52 |
st.title("RAG-based PDF Question Answering")
|
53 |
-
st.write("
|
54 |
-
|
55 |
-
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
56 |
-
if uploaded_file:
|
57 |
-
stored_chunks, _ = process_pdf(uploaded_file)
|
58 |
-
st.success("PDF processed and embeddings created.")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from groq import Groq
|
7 |
from dotenv import load_dotenv
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
|
11 |
+
# Predefined Google Drive links
|
12 |
+
PDF_LINKS = [
|
13 |
+
"https://drive.google.com/uc?id=1JPf0XvDhn8QoDOlZDrxCOpu4WzKFESNz",
|
14 |
+
# Add more Google Drive links here
|
15 |
+
]
|
16 |
|
17 |
# Initialize Groq client
|
18 |
client = Groq(api_key="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")
|
|
|
24 |
dimension = 384 # Embedding size for the Sentence Transformer model
|
25 |
index = faiss.IndexFlatL2(dimension)
|
26 |
|
27 |
+
# Store chunks globally
|
28 |
+
stored_chunks = []
|
29 |
+
|
30 |
+
# Function to download and extract the PDF content
|
31 |
+
def download_and_process_pdf(link):
|
32 |
+
response = requests.get(link)
|
33 |
+
if response.status_code == 200:
|
34 |
+
pdf_reader = PdfReader(BytesIO(response.content))
|
35 |
+
text = ""
|
36 |
+
for page in pdf_reader.pages:
|
37 |
+
text += page.extract_text()
|
38 |
+
chunks = [text[i:i + 500] for i in range(0, len(text), 500)] # Chunk into 500-char blocks
|
39 |
+
embeddings = model.encode(chunks)
|
40 |
+
index.add(embeddings)
|
41 |
+
stored_chunks.extend(chunks)
|
42 |
+
else:
|
43 |
+
print(f"Failed to download PDF from link: {link}")
|
44 |
+
|
45 |
+
# Process all predefined links
|
46 |
+
for link in PDF_LINKS:
|
47 |
+
download_and_process_pdf(link)
|
48 |
|
49 |
# Function to query FAISS and generate a response
|
50 |
def query_model(query):
|
|
|
67 |
|
68 |
# Streamlit app
|
69 |
st.title("RAG-based PDF Question Answering")
|
70 |
+
st.write("Preloaded documents from Google Drive are ready for querying.")
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
query = st.text_input("Ask a question:")
|
73 |
+
if query:
|
74 |
+
answer = query_model(query)
|
75 |
+
st.write("### Answer:")
|
76 |
+
st.write(answer)
|