Spaces:
Runtime error
Runtime error
File size: 7,643 Bytes
eb22b86 3321613 eb22b86 3321613 eb22b86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
# from img_classification import teachable_machine_classification
from PIL import Image, ImageOps
import streamlit_authenticator as stauth
import yaml
from yaml.loader import SafeLoader
import os.path as osp
import glob
# import cv2
import numpy as np
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import requests
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# authentification
with open('./config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
name, authentication_status, username = authenticator.login('Login', 'main')
if authentication_status:
authenticator.logout('Logout', 'main')
page = st.sidebar.selectbox("探索或预测", ("image_caption",
"image_to_text"
))
if page == "image_caption":
st.title("Image caption")
st.write("Model[link](https://huggingface.co/Salesforce/blip-image-captioning-base)")
uploaded_file = st.file_uploader("Select..", type=["jpg","png","jpeg"])
if uploaded_file is not None:
raw_image = Image.open(uploaded_file).convert('RGB')
st.image(raw_image, caption='image', use_column_width=True)
st.write("")
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt")
out = model.generate(**inputs)
st.text(processor.decode(out[0], skip_special_tokens=True))
# st.text(generated_text)
urll = st.text_input("image url", value="")
if st.button("send"):
raw_image1 = Image.open(requests.get(urll, stream=True).raw).convert('RGB')
st.image(raw_image1, caption='image', use_column_width=True)
inputs = processor(raw_image1, return_tensors="pt")
out = model.generate(**inputs)
st.text(processor.decode(out[0], skip_special_tokens=True))
elif page == "image_to_text":
pass
# page = st.sidebar.selectbox("探索或预测", ("将图像放大为高清",
# "肺炎x_ray图像分类",
# "生成动漫人脸图像"
# ))
# if page == "肺炎x_ray图像分类":
# st.title("使用谷歌的可教机器进行图像分类")
# st.write("Google Teachable machine"" [link](https://teachablemachine.withgoogle.com/train/image)")
# st.header("肺炎x_ray")
# st.text("上传肺x_ray图片")
# uploaded_file = st.file_uploader("选择..", type=["jpg","png","jpeg"])
# if uploaded_file is not None:
# image = Image.open(uploaded_file).convert('RGB')
# st.image(image, caption='上传了图片。', use_column_width=True)
# st.write("")
# st.write("分类...")
# label = teachable_machine_classification(image, 'pneumonia__x_ray_image_classify_normal_vs_penumonia.h5')
# if label == 0:
# st.write("正常")
# else:
# st.write("肺炎")
# st.text("类:正常,肺炎")
# # 0 normal
# # 1 pneumonia
# elif page =="将图像放大为高清":
# st.title("使用 ESGAN 放大图像")
# st.write("ESGAN 安装"" [link](https://github.com/xinntao/ESRGAN)")
# st.write("ESGAN 模型下载"" [link](https://drive.google.com/drive/u/0/folders/17VYV_SoZZesU6mbxz2dMAIccSSlqLecY)")
# st.header("将图像放大为高清")
# st.text("上传图片")
# model_path = './RRDB_ESRGAN_x4.pth' # models/RRDB_ESRGAN_x4.pth OR models/RRDB_PSNR_x4.pth
# # device = torch.device('cuda') # if you want to run on CPU, change 'cuda' -> cpu
# device = torch.device('cpu')
# # test_img_folder = 'LR/*'
# uploaded_file = st.file_uploader("选择..", type=["jpg","png","jpeg"])
# if uploaded_file is not None:
# img = Image.open(uploaded_file).convert('RGB')
# st.image(img, caption='上传了图片。', use_column_width=True)
# st.write("")
# st.write("")
# st.write("放大图像,大约等待时间:1 分钟,请稍候...")
# rrdb_esrgan_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
# rrdb_esrgan_model.load_state_dict(torch.load(model_path), strict=True)
# rrdb_esrgan_model.eval()
# rrdb_esrgan_model = rrdb_esrgan_model.to(device)
# idx = 0
# # img = np.array(img.getdata()).reshape(img.size[0], img.size[1], 3) * 1.0 / 255
# # uploaded_file = st.file_uploader("Upload Image")
# # image = Image.open(uploaded_file)
# # st.image(image, caption='Input', use_column_width=True)
# img = np.array(img)* 1.0 / 255
# # cv2.imwrite('out.jpg', cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
# img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
# img_LR = img.unsqueeze(0)
# img_LR = img_LR.to(device)
# with torch.no_grad():
# output = rrdb_esrgan_model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
# output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
# output = torch.tensor((output * 255.0).round())
# fig1 = plt.figure(figsize=(14,8))
# fig1.suptitle("Upscaled image")
# plt.imshow(np.transpose(vutils.make_grid(output, padding=2, normalize=True), (0,1, 2)))
# st.pyplot(fig1)
# elif page =="生成动漫人脸图像":
# # Number of GPUs available. Use 0 for CPU mode.
# ngpu = 1
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
# # anime_face_gan_gen_model = AnimeFaceGenerator(ngpu).to(device)
# anime_face_gan_gen_model = torch.load("./anime_face_gan_generator64_64.pt",map_location=torch.device('cpu') )
# pp1=st.slider("p1",-5.01,5.00)
# pp2=st.slider("p2",-5.01,5.00)
# pp3=st.slider("p3",-5.01,5.00)
# pp4=st.slider("p4",-5.01,5.00)
# pp5=st.slider("p5",-5.01,5.00)
# pp6=st.slider("p6",-5.01,5.00)
# pp7=st.slider("p7",-5.01,5.00)
# pp8=st.slider("p8",-5.01,5.00)
# anime_face_gan_gen_model.eval()
# bla = [pp1,pp2,pp3,pp4,pp5,pp6,pp7,pp8]
# randomlist = []
# for i in range(0,92):
# n = random.random()
# randomlist.append(n)
# res = bla + randomlist
# # print(res)
# fixed_noise = torch.tensor(res).reshape(1,100,1,1)
# # fixed_noise = torch.randn(1, nz, 1, 1, device=device)
# print(fixed_noise)
# fake = anime_face_gan_gen_model(fixed_noise)
# fig1 = plt.figure(figsize=(14,8))
# fig1.suptitle("随机生成的动漫脸")
# plt.imshow(np.transpose(vutils.make_grid(fake, padding=2, normalize=True), (1, 2, 0)))
# st.pyplot(fig1)
elif authentication_status == False:
st.error("用户名/密码不正确")
elif authentication_status == None:
st.warning('请输入您的用户名和密码')
|