File size: 6,792 Bytes
44ac4da
 
a21c8ab
 
 
 
 
 
 
b31a1d5
86cd028
b31a1d5
 
a21c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86cd028
c904168
86cd028
28b4830
ea57214
c904168
 
3edd3ca
c904168
3edd3ca
c904168
3edd3ca
c904168
 
 
999ad78
 
d9d6497
9ff92c0
 
 
 
a21c8ab
9ff92c0
 
 
 
f98bc09
a21c8ab
b31a1d5
a21c8ab
 
 
 
 
e95954d
dbafc77
a21c8ab
 
 
 
 
8f8d70a
3ddfba1
 
 
 
 
828756a
a21c8ab
a6d7fbc
3ddfba1
8f8d70a
5e8eef3
3ddfba1
 
 
 
 
 
a6d7fbc
 
992208b
a6d7fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992208b
a6d7fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
992208b
a6d7fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992208b
 
 
a6d7fbc
992208b
a6d7fbc
 
 
992208b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import streamlit as st

# A100 specs
TFLOPS = 312e12 
GB_S = 1935e9

# in ms
THREAD_OVERHEAD = 0.005

# in ms
def calc_exec_time(comp_flop, mem_bytes):
  exec_time = comp_flop/TFLOPS + mem_bytes/GB_S
  return max(exec_time*1000, THREAD_OVERHEAD)

def qkv_mha_exec(bs, h, n, d):
  flop = 2*bs*1*d*3*d
  nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
     
def qkv_mqa_exec(bs, h, n, d):
  flop = 2*bs*1*d*(1+2/h)*d
  nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mha_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def att2_mha_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att2_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def out_exec(bs, h, n, d):
  flop = 2*bs*1*d*d
  nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def softmax_exec(bs, h, n, d):
  flop = 0
  nbytes = 2*bs*h*n + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def ln_exec(bs, h, n, d):
  nbytes = 2*bs*1*d + 2*bs*1*d
  flop = 0
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def mlp_exec(bs, h, n, d):
  flop = 2*bs*1*d*4*d
  nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
  exec_time = calc_exec_time(comp_flop, mem_bytes)
  comp_flop = round(comp_flop/1e9, 2)
  mem_bytes = round(mem_bytes/1e6, 2)
  
  c1.write("GFLOP:")
  c2.write(str(comp_flop))
  c1.write("MB: ")
  c2.write(str(mem_bytes))
  c1.write("Time (ms):")
  c2.write(str(exec_time))
  
  return exec_time

st.sidebar.header("Transformer parameters")
col1, col2 = st.sidebar.columns([2, 4])

bs = st.sidebar.number_input('Batch size', value=10)
h = st.sidebar.number_input('Num heads',value=16)
d = st.sidebar.number_input('Dimension', value=768)
l = st.sidebar.number_input('Num layers', value=24)

n_start = st.sidebar.number_input('Start seq', value=1)
n = st.sidebar.number_input('End seq', value=1024)

st.sidebar.header("GPU parameters")


st.header("Execution time (ms)")

mqa_total_time = 0.
mha_total_time = 0.

for i in range(n_start, n):
  shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \
                + 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2]
  mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
  mha_total_time += l*mha_time
  mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
  mqa_total_time += l*mqa_time
  
c1, c2 = st.columns([2, 4])
c1.write("Multi-Head Attention:")
c2.write(str(round(mha_total_time, 2)))
c1.write("Multi-Query Attention:")
c2.write(str(round(mqa_total_time, 2)))
c1.write("Speed-up MQA over MHA: ")
c2.write(str(round(mha_total_time/mqa_total_time,2)))

st.header("Memory consumption")
st.caption("MHA")
c1, c2 = st.columns([2, 4])
num_params = 12*l*d*d
c1.write("Num Parameters (in B)")
c2.write(str(round(num_params/1e9, 3)))
c1.write("Storing activations")
acts = round(2*l*(d/h)*h*n/1e9, 2)
c2.write(str(acts))



breakdown = st.checkbox("Show breakdown per operation")
if breakdown:
  st.header('Attention layer')
  
  st.subheader('QKV projection')
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*1*d*3*d
  mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  c1, c2 = st.columns([2, 3])
  qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*1*d*(1+2/h)*d
  mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  c1, c2 = st.columns([2, 3])
  qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('QK gemm')
  st.write("Showing calculation for the maximum sequence length (n)")
  
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*h*(d/h)*n
  mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*h*(d/h)*n
  mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('Attention-value gemm')
  st.write("Showing calculation for the maximum sequence length (n)")
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*h*n*(d/h)
  mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  c1, c2 = st.columns([2, 3])
  att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*h*n*(d/h)
  mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  c1, c2 = st.columns([2, 3])
  att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('Output projection')
  out_flop = 2*bs*1*d*d
  out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  c1, c2 = st.columns([2, 3])
  out_time = print_kernel_execution(c1, c2, out_flop, out_bytes)
  
  st.subheader('Element-wise ops')
  st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")
  
  st.caption("Softmax")
  softmax_bytes = 2*bs*h*n + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)
  
  st.caption("Layer norm/residual connection")
  ln_bytes = 2*bs*1*d
  ln_flop = 0
  ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
  
  st.header('MLP layer')  
  st.subheader('First and Second Linear Layer')
  flop, nbytes, exec_time = mlp_exec(bs, h, n, d)
  c1, c2 = st.columns([2, 3])
  mlp2_time = print_kernel_execution(c1, c2, flop, nbytes)
  
  st.subheader('Element-wise ops')
  st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
  flop, nbytes, exec_time = ln_exec(bs, h, n, d)
  c1, c2 = st.columns([2, 3])
  mlp2_time = print_kernel_execution(c1, c2, flop, nbytes)