File size: 6,688 Bytes
44ac4da
 
a21c8ab
 
 
 
 
 
 
86cd028
 
a21c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86cd028
c904168
 
86cd028
c904168
28b4830
ea57214
c904168
 
3edd3ca
c904168
3edd3ca
c904168
3edd3ca
c904168
 
 
a21c8ab
1934207
999ad78
 
d9d6497
9ff92c0
 
 
 
a21c8ab
9ff92c0
 
 
 
f98bc09
a21c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a275f69
f86ffab
a275f69
 
c904168
 
2e71f02
c904168
f86ffab
a275f69
df3088f
 
d9d6497
2a3864d
f86ffab
a275f69
 
c904168
a275f69
df3088f
b9ffa51
c904168
8cbefab
df3088f
a275f69
8cbefab
 
 
 
df3088f
f0d14cb
8cbefab
a275f69
28b4830
 
8cbefab
729a063
df3088f
a275f69
28b4830
 
c904168
729a063
1934207
a275f69
86cd028
 
f0d14cb
86cd028
f0d14cb
 
729a063
86cd028
 
 
 
3a743e7
86cd028
729a063
 
 
2a3864d
a275f69
c904168
 
54cd0e6
 
 
 
c904168
 
54cd0e6
 
 
 
729a063
 
 
 
 
2a3864d
729a063
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import streamlit as st

# A100 specs
TFLOPS = 312e12 
GB_S = 1935e9

# in ms
THREAD_OVERHEAD = 0.005

def calc_exec_time(comp_flop, mem_bytes):
  return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000

def qkv_mha_exec(bs, h, n, d):
  flop = 2*bs*1*d*3*d
  nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
     
def qkv_mqa_exec(bs, h, n, d):
  flop = 2*bs*1*d*(1+2/h)*d
  nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mha_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def att2_mha_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att2_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def out_exec(bs, h, n, d):
  flop = 2*bs*1*d*d
  nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def softmax_exec(bs, h, n, d):
  flop = 0
  nbytes = 2*bs*h*n + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def ln_exec(bs, h, n, d):
  nbytes = 2*bs*1*d + 2*bs*1*d
  flop = 0
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def mlp_exec(bs, h, n, d):
  flop = 2*bs*1*d*4*d
  nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
  arith_int = comp_flop/mem_bytes
  exec_time = calc_exec_time(comp_flop, mem_bytes)

  comp_flop = round(comp_flop/1e9, 2)
  mem_bytes = round(mem_bytes/1e6, 2)
  
  c1.write("GFLOP:")
  c2.write(str(comp_flop))
  c1.write("MB: ")
  c2.write(str(mem_bytes))
  c1.write("Time (ms):")
  c2.write(str(exec_time))
  
  return exec_time



st.sidebar.header("Transformer parameters")
col1, col2 = st.sidebar.columns([2, 4])

bs = st.sidebar.number_input('Batch size', value=10)
h = st.sidebar.number_input('Num heads',value=16)
d = st.sidebar.number_input('Dimension', value=768)
l = st.sidebar.number_input('Num layers', value=24)

n_start = st.sidebar.number_input('Start seq', value=1)
n = st.sidebar.number_input('End seq', value=1024)

st.sidebar.header("GPU parameters")


st.header("Total execution time")

mqa_total_time = 0.
mha_total_time = 0.

for i in range(n_start, n):
  shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] \ 
                2*ln_exec(bs, h, i, d)[2] + 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)
  mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
  mha_total_time += l*mha_time
  mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
  mqa_total_time += l*mqa_time
  
st.write("MHA exec time: " + str(mha_total_time))
st.write("MQA exec time: " + str(mqa_total_time))

st.header('Attention layer')

st.subheader('QKV projection')
st.caption("Multi-Head Attention")
mha_flop = 2*bs*1*d*3*d
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
c1, c2 = st.columns([2, 3])
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*1*d*(1+2/h)*d
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
c1, c2 = st.columns([2, 3])
qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('QK gemm')
st.write("Note that calculation depends on sequence length (n)")

st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*(d/h)*n
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*(d/h)*n
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
c1, c2 = st.columns([2, 3])
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('Attention-value gemm')
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.")
st.caption("Multi-Head Attention")
mha_flop = 2*bs*h*n*(d/h)
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)

st.caption("Multi-Query Attention")
mqa_flop = 2*bs*h*n*(d/h)
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
c1, c2 = st.columns([2, 3])
att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)

st.subheader('Output projection')
out_flop = 2*bs*1*d*d
out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
c1, c2 = st.columns([2, 3])
out_time = print_kernel_execution(c1, c2, out_flop, out_bytes)

st.subheader('Element-wise ops')
st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")

st.caption("Softmax")
softmax_bytes = 2*bs*h*n + 2*bs*h*n
c1, c2 = st.columns([2, 3])
softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)

st.caption("Layer norm/residual connection")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)

st.header('MLP')
st.subheader('First Linear')
mlp1_flop = 2*bs*1*d*4*d
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)

st.subheader('Second Linear')
mlp2_flop = 2*bs*1*d*4*d
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
c1, c2 = st.columns([2, 3])
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)

st.subheader('Element-wise ops')
st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
ln_bytes = 2*bs*1*d
ln_flop = 0
ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)

st.header("Adding it all up")

shared_time = out_time + softmax_time + 2*ln_time + mlp1_time + mlp2_time + 3*ln_time
mha_total_time = qkv_mha_time + att1_mha_time + att2_mha_time + shared_time
mqa_total_time = qkv_mqa_time + att1_mqa_time + att2_mqa_time + shared_time
st.write("MHA exec time (ms): " + str(mha_total_time))
st.write("MQA exec time (ms): " + str(mqa_total_time))