File size: 6,679 Bytes
44ac4da
 
a21c8ab
 
 
 
 
 
 
b31a1d5
86cd028
b31a1d5
 
a21c8ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86cd028
c904168
86cd028
28b4830
ea57214
c904168
 
3edd3ca
c904168
3edd3ca
c904168
3edd3ca
c904168
 
 
a21c8ab
1934207
999ad78
 
d9d6497
9ff92c0
 
 
 
a21c8ab
9ff92c0
 
 
 
f98bc09
a21c8ab
b31a1d5
a21c8ab
 
 
 
 
e95954d
dbafc77
a21c8ab
 
 
 
 
b31a1d5
 
a6d7fbc
a21c8ab
a6d7fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import streamlit as st

# A100 specs
TFLOPS = 312e12 
GB_S = 1935e9

# in ms
THREAD_OVERHEAD = 0.005

# in ms
def calc_exec_time(comp_flop, mem_bytes):
  exec_time = comp_flop/TFLOPS + mem_bytes/GB_S
  return max(exec_time*1000, THREAD_OVERHEAD)

def qkv_mha_exec(bs, h, n, d):
  flop = 2*bs*1*d*3*d
  nbytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
     
def qkv_mqa_exec(bs, h, n, d):
  flop = 2*bs*1*d*(1+2/h)*d
  nbytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mha_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att1_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*(d/h)*n
  nbytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def att2_mha_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def att2_mqa_exec(bs, h, n, d):
  flop = 2*bs*h*n*(d/h)
  nbytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def out_exec(bs, h, n, d):
  flop = 2*bs*1*d*d
  nbytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def softmax_exec(bs, h, n, d):
  flop = 0
  nbytes = 2*bs*h*n + 2*bs*h*n
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def ln_exec(bs, h, n, d):
  nbytes = 2*bs*1*d + 2*bs*1*d
  flop = 0
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time

def mlp_exec(bs, h, n, d):
  flop = 2*bs*1*d*4*d
  nbytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  exec_time = calc_exec_time(flop, nbytes)
  return flop, nbytes, exec_time
  
def print_kernel_execution(c1, c2, comp_flop, mem_bytes):
  exec_time = calc_exec_time(comp_flop, mem_bytes)
  comp_flop = round(comp_flop/1e9, 2)
  mem_bytes = round(mem_bytes/1e6, 2)
  
  c1.write("GFLOP:")
  c2.write(str(comp_flop))
  c1.write("MB: ")
  c2.write(str(mem_bytes))
  c1.write("Time (ms):")
  c2.write(str(exec_time))
  
  return exec_time



st.sidebar.header("Transformer parameters")
col1, col2 = st.sidebar.columns([2, 4])

bs = st.sidebar.number_input('Batch size', value=10)
h = st.sidebar.number_input('Num heads',value=16)
d = st.sidebar.number_input('Dimension', value=768)
l = st.sidebar.number_input('Num layers', value=24)

n_start = st.sidebar.number_input('Start seq', value=1)
n = st.sidebar.number_input('End seq', value=1024)

st.sidebar.header("GPU parameters")


st.header("Execution time (ms)")

mqa_total_time = 0.
mha_total_time = 0.

for i in range(n_start, n):
  shared_time = out_exec(bs, h, i, d)[2] + softmax_exec(bs, h, i , d)[2] + 2*ln_exec(bs, h, i, d)[2] \
                + 2*mlp_exec(bs, h, i, d)[2] + 3*ln_exec(bs, h, i, d)[2]
  mha_time = shared_time + qkv_mha_exec(bs, h, i, d)[2] + att1_mha_exec(bs, h, i, d)[2] + att2_mha_exec(bs, h, i, d)[2]
  mha_total_time += l*mha_time
  mqa_time = shared_time + qkv_mqa_exec(bs, h, i, d)[2] + att1_mqa_exec(bs, h, i, d)[2] + att2_mqa_exec(bs, h, i, d)[2]
  mqa_total_time += l*mqa_time
  
st.write("Multi-Head Attention: " + str(mha_total_time))
st.write("Multi-Query Attention: " + str(mqa_total_time))
st.write("Speed-up MQA over MHA: " + str(mha_total_time/mqa_total_time))

st.header("Memory consumption")



breakdown = st.checkbox("Show breakdown per layer")
if breakdown:
  st.header('Attention layer')
  
  st.subheader('QKV projection')
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*1*d*3*d
  mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d
  c1, c2 = st.columns([2, 3])
  qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*1*d*(1+2/h)*d
  mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d
  c1, c2 = st.columns([2, 3])
  qkv_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('QK gemm')
  st.write("Note that calculation depends on sequence length (n)")
  
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*h*(d/h)*n
  mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*h*(d/h)*n
  mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('Attention-value gemm')
  st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.")
  st.caption("Multi-Head Attention")
  mha_flop = 2*bs*h*n*(d/h)
  mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h)
  c1, c2 = st.columns([2, 3])
  att2_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes)
  
  st.caption("Multi-Query Attention")
  mqa_flop = 2*bs*h*n*(d/h)
  mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h)
  c1, c2 = st.columns([2, 3])
  att2_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes)
  
  st.subheader('Output projection')
  out_flop = 2*bs*1*d*d
  out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d
  c1, c2 = st.columns([2, 3])
  out_time = print_kernel_execution(c1, c2, out_flop, out_bytes)
  
  st.subheader('Element-wise ops')
  st.write("We also need to take into the softmax layer, layer norm, and residual connection. We assume that these operations are memory bound. ")
  
  st.caption("Softmax")
  softmax_bytes = 2*bs*h*n + 2*bs*h*n
  c1, c2 = st.columns([2, 3])
  softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)
  
  st.caption("Layer norm/residual connection")
  ln_bytes = 2*bs*1*d
  ln_flop = 0
  ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)
  
  st.header('MLP')
  st.subheader('First Linear')
  mlp1_flop = 2*bs*1*d*4*d
  mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  c1, c2 = st.columns([2, 3])
  mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes)
  
  st.subheader('Second Linear')
  mlp2_flop = 2*bs*1*d*4*d
  mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d
  c1, c2 = st.columns([2, 3])
  mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes)
  
  st.subheader('Element-wise ops')
  st.write("We also need to take into the GeLU, layer norm, and residual connection. We assume that these operations are memory bound. ")
  ln_bytes = 2*bs*1*d
  ln_flop = 0
  ln_time = print_kernel_execution(c1, c2, 0, ln_bytes)