Spaces:
Runtime error
Runtime error
import streamlit as st | |
def number_field(label, **kwargs): | |
c1, c2 = st.columns([2, 4]) | |
c1.write(label) | |
return c2.number_input('', **kwargs) | |
def calc_exec_time(comp_flop, mem_bytes): | |
return (comp_flop/TFLOPS + mem_bytes/GB_S)*1000 | |
def print_kernel_execution(c1, c2, comp_flop, mem_bytes): | |
arith_int = comp_flop/mem_bytes | |
exec_time = calc_exec_time(comp_flop, mem_bytes) | |
comp_flop = round(comp_flop/1e9, 2) | |
mem_bytes = round(mem_bytes/1e6, 2) | |
c1.write("GFLOP:") | |
c2.write(str(comp_flop)) | |
c1.write("MB: ") | |
c2.write(str(mem_bytes)) | |
c1.write("Arithm. intensity:") | |
c2.write(str(arith_int)) | |
c1.write("Time (ms):") | |
c2.write(str(exec_time)) | |
return exec_time | |
TFLOPS = 312e12 | |
GB_S = 1935e9 | |
st.header("Transformer parameters") | |
col1, col2 = st.columns([2, 4]) | |
bs = number_field('Batch size', value=10) | |
h = number_field('Num heads', value=16) | |
d = number_field('Dimension', value=768) | |
n_start = number_field('Start seq', value=1) | |
n = number_field('End seq', value=1024) | |
l = number_field('Num layers', value=24) | |
st.header('Attention layer') | |
st.subheader('QKV projection') | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*1*d*3*d | |
mha_bytes = 2*bs*1*d + 2*3*d*d + 2*bs*1*3*d | |
c1, c2 = st.columns([2, 3]) | |
qkv_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*1*d*(1+2/h)*d | |
mqa_bytes = 2*bs*1*d + 2*(2/h)*d*d + 2*bs*1*(2/h)*d | |
c1, c2 = st.columns([2, 3]) | |
qkv_mha_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('QK gemm') | |
st.write("Note that calculation depends on sequence length (n)") | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*h*(d/h)*n | |
mha_bytes = 2*bs*h*(d/h) + 2*bs*h*n*(d/h) + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
att1_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*h*(d/h)*n | |
mqa_bytes = 2*bs*h*(d/h) + 2*bs*n*(d/h) + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
att1_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('Attention-value gemm') | |
st.write("Calculation depends on sequence length. We show numbers for maximum sequence length n.") | |
st.caption("Multi-Head Attention") | |
mha_flop = 2*bs*h*n*(d/h) | |
mha_bytes = 2*bs*h*n + 2*bs*h*n*(d/h) + 2*bs*h*(d/h) | |
c1, c2 = st.columns([2, 3]) | |
att_mha_time = print_kernel_execution(c1, c2, mha_flop, mha_bytes) | |
st.caption("Multi-Query Attention") | |
mqa_flop = 2*bs*h*n*(d/h) | |
mqa_bytes = 2*bs*n*(d/h) + 2*bs*n*(d/h) + 2*bs*h*(d/h) | |
c1, c2 = st.columns([2, 3]) | |
att_mqa_time = print_kernel_execution(c1, c2, mqa_flop, mqa_bytes) | |
st.subheader('Output projection') | |
out_flop = 2*bs*1*d*d | |
out_bytes = 2*bs*1*d + 2*d*d + 2*bs*1*d | |
c1, c2 = st.columns([2, 3]) | |
out_time = print_kernel_execution(c1, c2, out_flop, out_bytes) | |
st.subheader('Element-wise ops') | |
st.write("We also need to take into the softmax layer and layer norm") | |
st.caption("Softmax") | |
softmax_bytes = 2*bs*h*n + 2*bs*h*n | |
c1, c2 = st.columns([2, 3]) | |
softmax_time = print_kernel_execution(c1, c2, 0, softmax_bytes)) | |
st.caption("Layer norm") | |
st.header('MLP') | |
st.subheader('First Linear') | |
mlp1_flop = 2*bs*1*d*4*d | |
mlp1_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
c1, c2 = st.columns([2, 3]) | |
mlp1_time = print_kernel_execution(c1, c2, mlp1_flop, mlp1_bytes) | |
st.subheader('Second Linear') | |
mlp2_flop = 2*bs*1*d*4*d | |
mlp2_bytes = 2*bs*1*d + 2*d*4*d + 2*bs*1*4*d | |
c1, c2 = st.columns([2, 3]) | |
mlp2_time = print_kernel_execution(c1, c2, mlp2_flop, mlp2_bytes) | |